答案显然是边的左边连通块的大小 * 右边连通块的大小,考虑用 LCT 动态维护树,询问时将边 ( x , y ) (x,y) (x,y) 剪短,然后输出 x x x 所在辅助树的大小 * y y y 所在辅助树的大小。
一般用LCT维护的都是树链上的信息,而不是子树信息。要维护子树信息,就要考虑虚树边的贡献,在这题中要维护的子树信息是 子树结点个数。设 s z 2 sz2 sz2 为虚树边的子节点个数, s z sz sz 为子节点个数。 p u s h u p pushup pushup 中 s z [ r t ] = s z [ l s ] + s z [ r s ] + s z 2 [ r t ] + 1 sz[rt] = sz[ls] + sz[rs] + sz2[rt] + 1 sz[rt]=sz[ls]+sz[rs]+sz2[rt]+1
考虑如何维护 s z 2 sz2 sz2,维护 s z 2 sz2 sz2 要考虑有哪些操作会改变虚边。
首先在 r o r a t e , s p l a y rorate,splay rorate,splay 操作中,进行翻转修改的都是实边, s z 2 sz2 sz2 的信息不会变, a c c e s s access access 操作会修改虚边,在修改的地方把贡献也修改:
inline void access(int x) { //access操作将x 到 根路径上的边修改为重边
int lst = 0;
while(x > 0) {
splay(x);
sz2[x] += sz[ch[x][1]] - sz[lst]; //修改虚边贡献
ch[x][1] = lst;
pushup(x);
lst = x; x = f[x];
}
}
在 m o v e _ t o _ r o o t , f i n d r o o t , s p l i t move\_to\_root,findroot,split move_to_root,findroot,split 操作中都是调用 s p l a y , a c c e s s splay,access splay,access,不需要多余的维护操作。
在 l i n k link link 操作中,加了一条边 ( x , y ) (x,y) (x,y) 加的是虚边,要加上这条虚边的贡献,修改时要将 x , y x,y x,y 都通过 m o v e _ t o _ r o o t move\_to\_root move_to_root 操作移动到根节点,如果不移动到根节点,修改的时候所有 y y y 的父节点的 s z 2 sz2 sz2 都要修改(假设 是将 x 连在 y 的下面)
inline void link(int x,int y) {
move_to_root(x); move_to_root(y); //由于 sz 维护的是辅助树中子树结点个数,不再是 splay 中子树结点个数
f[x] = y; splay(x); //连边操作后,若 y 不是根,则 y 的所有父亲都要更新,不如先将 y 移到根
sz2[y] += sz[x]; pushup(y);
}
在 cut 操作中,cut 掉的是实边,不会影响 s z 2 sz2 sz2,用 p u s h u p pushup pushup 操作维护 s z sz sz 即可。
一般来说维护的虚子树信息需要满足可加减性,因为在 a c c e s s access access 操作会修改实边和虚边,要扣掉之前的贡献,加上新的贡献。(对于不满足加减性的信息似乎有其它科技操作)
整体代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e6 + 10;
typedef long long ll;
#define pii pair<int,int>
#define fir first
#define sec second
int n,m,ans;
struct node {
int u,v,a,b;
bool operator < (const node &rhs) const {
return a < rhs.a;
}
}E[maxn];
multiset<int> st;
inline int read(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}
struct LCT { //用splay维护原森林的连通,用到了splay的操作以及数组
int ch[maxn][2]; //ch[u][0] 表示 左二子,ch[u][1] 表示右儿子
int f[maxn]; //当前节点的父节点
int tag[maxn]; //翻转标记,乘标记,加标记
int top,sta[maxn],sz[maxn],sz2[maxn];
inline bool get(int x) {
return ch[f[x]][1] == x;
}
void init() {
for (int i = 1; i <= n; i++)
sz2[i] = 0, sz[i] = 1;
}
inline void pushup(int rt) {
if (rt) {
sz[rt] = sz2[rt] + 1;
int ls = ch[rt][0], rs = ch[rt][1];
if (ls) {
sz[rt] += sz[ls];
}
if (rs) {
sz[rt] += sz[rs];
}
}
}
inline void pushdown(int rt) {
if (tag[rt]) {
int ls = ch[rt][0], rs = ch[rt][1];
if (ls) swap(ch[ls][0],ch[ls][1]), tag[ls] ^= 1;
if (rs) swap(ch[rs][0],ch[rs][1]), tag[rs] ^= 1;
tag[rt] = 0;
}
}
inline bool isroot(int x) {
return (ch[f[x]][0] != x) && (ch[f[x]][1] != x);
}
inline void rotate(int x) { //旋转操作,根据 x 在 f[x] 的哪一侧进行左旋和右旋
int old = f[x], oldf = f[old];
int whichx = get(x);
if(!isroot(old)) ch[oldf][ch[oldf][1] == old] = x; //如果 old 不是根节点,就要修改 oldf 的子节点信息
ch[old][whichx] = ch[x][whichx ^ 1];
ch[x][whichx ^ 1] = old;
f[ch[old][whichx]] = old;
f[old] = x; f[x] = oldf;
pushup(old); pushup(x);
}
inline void splay(int x) { //将 x 旋到所在 splay 的根
top = 0; sta[++top] = x;
for (int i = x; !isroot(i); i = f[i]) sta[++top] = f[i]; //在 splay 中维护 下推标记
while(top) pushdown(sta[top--]);
for(int fa = f[x]; !isroot(x); rotate(x), fa = f[x]) { //再把x翻上来
if(!isroot(fa)) //如果fa非根,且x 和 fa是同一侧,那么先翻转fa,否则先翻转x
rotate((get(x) == get(fa)) ? fa : x);
}
}
inline void access(int x) { //access操作将x 到 根路径上的边修改为重边
int lst = 0;
while(x > 0) {
splay(x);
sz2[x] += sz[ch[x][1]] - sz[lst];
ch[x][1] = lst;
pushup(x);
lst = x; x = f[x];
}
}
inline void move_to_root(int x) { //将 x 移到 x 所在树的根(不是所在splay的根,所在splay只是一条重链)
access(x); splay(x); tag[x] ^= 1; swap(ch[x][0],ch[x][1]);
//将 x 移到 根之后 x 是深度最低的点,这条重链、这棵splay上所有点的深度颠倒,
//所有的点的左子树的点应该到右子树,因此要翻转这棵splay的左右子树
}
inline int findroot(int x) {
access(x);
splay(x);
int rt = x;
while(ch[rt][0]) rt = ch[rt][0];
return rt;
}
inline void split(int x,int y) {
move_to_root(x); access(y); splay(y);
}
inline void link(int x,int y) {
move_to_root(x); move_to_root(y); //由于 sz 维护的是辅助树中子树结点个数,不再是 splay 中子树结点个数
f[x] = y; splay(x); //连边操作后,若 y 不是根,则 y 的所有父亲都要更新,不如先将 y 移到根
sz2[y] += sz[x]; pushup(y);
}
inline void cut(int x,int y) {
split(x,y);
ch[y][0] = f[x] = 0;
pushup(y);
}
}tree;
int id,x,y,u,v,k[maxn],tot,vis[maxn];
char op[10];
int main() {
n = read(); m = read();
tree.init();
while (m--) {
scanf("%s",op);
x = read(); y = read();
if (op[0] == 'A') {
tree.link(x,y);
} else {
tree.cut(x,y);
tree.move_to_root(x);
tree.move_to_root(y);
printf("%lld\n",1ll * tree.sz[x] * tree.sz[y]);
tree.link(x,y);
}
}
return 0;
}