一维泊松方程定义为: u ′ ′ ( x ) = f ( x ) u''(x) = f(x) u′′(x)=f(x),边界条件为 x = 0 x=0 x=0 和 x = 1 x=1 x=1 处, u ( x ) = 0 u(x) = 0 u(x)=0,其中, f ( x ) = − π 2 sin ( π x ) f(x) = -\pi^2 \sin(\pi x) f(x)=−π2sin(πx),该方程的解析解为 u ( x ) = sin ( π x ) u(x) = \sin(\pi x) u(x)=