如何求解偏微分方程?我们可以将其转化为一个优化问题,先将PDE的信息编码到神经网络的损失函数中,然后使用神经网络来逼近方程的解,这种方法就是基于深度学习的数值方法——PINN。
具体来讲,PINN将偏微分方程表示为一个无限维度的函数空间中的积分方程,然后使用神经网络来逼近这个无限维度的函数空间中的解。在训练过程中,PINN最小化了神经网络的输出与偏微分方程的真值之间的差异,从而学习到了一个可以逼近偏微分方程解的神经网络模型。
相较于传统的数值方法,PINN具有更好的精度和效率,可以处理任意复杂的几何形状和边界条件,而且可以在不需要显式网格的情况下进行计算,有效提高解的准确性和泛化能力。
不过虽然PINN优点很多,目前在这个领域,求解高维PDE时依然会面临一些挑战。今天我就和大家分享一些经典的PINN求解偏微分方程的研究成果,希望可以给同学们提供更多的创新灵感。
论文和代码看文末
1.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
解决涉及非线性偏微分方程正逆问题的深度学习框架
「简述:」物理信息神经网络是一种用于解决监督学习任务的神经网络,同时遵守由非线性偏微分方程描述的任何给定物理定律。本文介绍了作者在这方面的两个主要问题:数据驱动解决方案和数据驱动发现偏微分方程。作者设计了两种不同类型的算法,即连续时间模型和离散时间模型。通过一系列经典问题,证明了所提出的框架的有效性。
2.Scientifc Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next
基于物理信息的神经网络的科学机器学习
「简述:」物理信息神经网络(PINN)是一种将偏微分方程编码为神经网络的一种新型方法