PINN神经网络求解偏微分方程的11种方法【附论文和代码下载】

文章探讨了如何通过将偏微分方程编码到神经网络的损失函数中,利用物理信息神经网络(PINN)解决复杂PDE。PINN展示了更高的精度和效率,但同时也面临着高维问题的挑战。文中分享了多个PINN在求解PDE中的应用实例和研究进展,包括其在流体力学、固体力学及传热问题中的应用和改进方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何求解偏微分方程?我们可以将其转化为一个优化问题,先将PDE的信息编码到神经网络的损失函数中,然后使用神经网络来逼近方程的解,这种方法就是基于深度学习的数值方法——PINN。

具体来讲,PINN将偏微分方程表示为一个无限维度的函数空间中的积分方程,然后使用神经网络来逼近这个无限维度的函数空间中的解。在训练过程中,PINN最小化了神经网络的输出与偏微分方程的真值之间的差异,从而学习到了一个可以逼近偏微分方程解的神经网络模型。

相较于传统的数值方法,PINN具有更好的精度和效率,可以处理任意复杂的几何形状和边界条件,而且可以在不需要显式网格的情况下进行计算,有效提高解的准确性和泛化能力。

不过虽然PINN优点很多,目前在这个领域,求解高维PDE时依然会面临一些挑战。今天我就和大家分享一些经典的PINN求解偏微分方程的研究成果,希望可以给同学们提供更多的创新灵感。

论文和代码看文末

1.Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

解决涉及非线性偏微分方程正逆问题的深度学习框架

「简述:」物理信息神经网络是一种用于解决监督学习任务的神经网络,同时遵守由非线性偏微分方程描述的任何给定物理定律。本文介绍了作者在这方面的两个主要问题:数据驱动解决方案和数据驱动发现偏微分方程。作者设计了两种不同类型的算法,即连续时间模型和离散时间模型。通过一系列经典问题,证明了所提出的框架的有效性。

2.Scientifc Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next

基于物理信息的神经网络的科学机器学习

「简述:」物理信息神经网络(PINN)是一种将偏微分方程编码为神经网络的一种新型方法

### 使用物理信息神经网络 (PINN) 求解纳维-斯托克斯 (NS) 方程 #### 背景知识 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种将物理定律嵌入到损失函数中的深度学习模型,能够有效地解决偏微分方程(PDEs)。对于流体力学领域内的复杂问题,如求解纳维-斯托克斯方程,PINNs 提供了一种强大的数值计算方法[^2]。 #### 方法概述 为了利用 PINNs 解决 NS 方程,通常会定义一个由多层感知器组成的神经网络来近似速度场 \( u(x,t), v(x,t) \) 压力场 \( p(x,t) \),并通过自动微分技术构建残差项。这些残差项代表了 PDE 的约束条件以及边界/初始条件的要求。训练过程中通过最小化总误差使得解满足给定的物理规律几何特性[^1]。 #### Python 示例代码实现 下面是一个简单的 PyTorch 实现片段用于说明如何设置并训练这样一个基于 PINN 的 NS 方程求解器: ```python import torch from torch import nn, optim import numpy as np class PINN_NS(nn.Module): def __init__(self, layers): super().__init__() self.linears = nn.ModuleList([nn.Linear(layers[i], layers[i+1]) for i in range(len(layers)-1)]) def forward(self, x): if not torch.is_tensor(x): x = torch.from_numpy(x) a = torch.tanh(self.linears[0](x)) for linear in self.linears[1:-1]: z = linear(a) a = torch.tanh(z) out = self.linears[-1](a) return out def compute_residual(model, X_f_train, device='cpu'): # 计算 NS 方程的残差... pass # 初始化参数其他配置... device = 'cuda' if torch.cuda.is_available() else 'cpu' layers = [3, 50, 50, 50, 3] model = PINN_NS(layers).to(device) optimizer = optim.Adam(model.parameters(), lr=1e-4) for epoch in range(num_epochs): optimizer.zero_grad() loss_data = ... # 数据驱动部分的损失 loss_phys = compute_residual(model, X_f_train, device=device) # 物理约束部分的损失 total_loss = loss_data + lambda_ * loss_phys total_loss.backward() optimizer.step() ``` 此段代码展示了基本架构的设计思路,具体细节比如 `compute_residual` 函数内部逻辑需依据实际应用场景调整完善。此外,在实践中还需要考虑更多因素如正则化技巧、优化策略的选择等以提高收敛性稳定性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值