PINN——加入物理约束的神经网络

本文介绍了物理信息神经网络(PINN),一种利用物理方程约束训练的深度学习框架,它能在较少数据下生成泛化能力强的模型。文章详细解释了算法原理,展示了在压力预测、图像超分辨率、电力系统动力学和声波裂缝检测等领域的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘要】 基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,它不仅能够像传统神经网络一样学习到训练数据样本的分布规律,而且能够学习到数学方程描述的物理定律。与纯数据驱动的神经网络学习相比,PINN在训练过程中施加了物理信息约束,因而能用更少的数据样本学习到更具泛化能力的模型。本文主要解析这种神经网络以及相关应用

1. 论文简介

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations 。

https://www.sciencedirect.com/science/article/pii/S0021999118307125

2019年,来自布朗大学应用数学的研究团队提出了一种用物理方程作为运算限制的“物理激发的神经网络” (PINN) 并发表在了计算物理学领域权威杂志《计算物理学期刊》(Journal of Computational Physics) 上。这篇论文一经发表就获得了大量关注。这篇论文因为代码体系的完整性使得开发人员们很容易上手把相关的学习框架应用到不同领域上去。所以在发表不久之后,一系列不同的PINN也被其他研究者开发出来。甚至可以不夸张的说,PINN是目前AI物理领域论文中最常见到的框架和词汇之一。

2. 算法描述

而所谓的物理神经网络,其实就是把物理方程作为限制加入神经网络中使训练的结果满足物理规律。而这个所谓的限制是怎么实现的?其实就是通过把物理方程的迭代前后的差值加到神经网络的损失函数里面去,让物理方程也“参与”到了训练过程。这样,神经网络在训练迭代时候优化的不仅仅是网络自己的损失函数,还有物理方程每次迭代的差,使得最后训练出来的结果就满足物理规律了。image
给定一个非线性PDE :
其中 u 是要求的解, N 是非线性偏微分算子,lambda 是需要待定的参数。 用一个具体的例子(Burgers方程)来说明主要的想法和步骤image
利用 Neural Networks 来逼近 。定义损失函数为image
其中imageimage
我们来分析一下损失函数。如果神经网络能很好地求解出PDE的解, 那么对于来自初边值的任一个点, 其值MSEu趋于零;对于内部的配置点, 因为很好地拟合了微分方程, MSEf趋于零,也就是说, 损失函数的值为 0 时, 我们便可以说在训练集上每个点都有神经网络的值趋于真实值 。这样问题便转化为如何优化损失函数。利用神经网络的反向传播机制和L-BFGS便可以求解。

3. 论文结果

PINN学习得到的N-S方程的解用于压力预测imageimage

相关应用论文

低分辨率图像重构到高分辨率图像

Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models(https://arxiv.org/abs/2011.02519)image

电力系统动力学求解

Physics-Informed Neural Networks for Power Systems(https://ieeexplore.ieee.org/abstract/document/9282004/)

金属表面声波裂缝检测

PHYSICS-INFORMED NEURAL NETWORK FOR ULTRASOUND NONDESTRUCTIVE QUANTIFICATION OF SURFACE BREAKING CRACKS(https://link.springer.com/article/10.1007/s10921-020-00705-1)imageimage

转自:PINN——加入物理约束的神经网络
### 有限元方法与物理神经网络PINN)的结合及其应用 #### 背景介绍 有限元方法(Finite Element Method, FEM)是一种广泛应用于工程领域中的数值计算技术,用于求解偏微分方程(PDEs)。它通过将连续域离散化为多个单元并近似其内部行为来实现复杂系统的建模。而物理神经网络(Physics-Informed Neural Networks, PINNs),则是一类基于深度学习的方法,能够在训练过程中嵌入已知的物理定律或约束条件[^1]。 #### 结合的意义 FEM 和 PINNs 的结合可以充分利用两者的优点:一方面,FEM 提供了一种成熟的理论框架以及经过验证的有效算法;另一方面,PINNs 则具备强大的泛化能力,尤其适合处理高维数据或者缺乏精确解析表达式的场景。这种融合不仅有助于提高传统数值模拟的效率和精度,还可能开辟新的研究方向,在材料科学、流体力学等领域展现巨大潜力。 #### 实现方式 具体来说,可以通过以下几种途径实现两者之间的协作: - **混合架构设计** 构造一种新型网络结构,其中部分层负责捕捉几何特征并通过映射至标准形状完成局部逼近操作——类似于经典意义上的形函数定义过程;其余组件则专注于满足特定边界/初始状况下的响应特性描述工作。 - **损失函数定制** 定义综合考虑残差项(Residual Term)以及其他附加惩罚因子的新目标函数形式。对于每一个候选权重组合而言,都需要重新评估对应的整体表现水平,并据此调整参数直至收敛为止。 ```python import tensorflow as tf from scipy.sparse import csr_matrix def build_fem_pinn_model(mesh_data, physics_constraints): """ Constructs a hybrid model combining Finite Element Analysis with Physics-Informed Neural Networks. Args: mesh_data (dict): Contains nodal coordinates and connectivity information of the finite element grid. physics_constraints (list): List containing symbolic representations of governing equations. Returns: keras.Model: Compiled TensorFlow/Keras Model ready for training. """ input_layer = Input(shape=(mesh_data['node_count'],)) hidden_layers = Dense(units=64, activation='tanh')(input_layer) # Incorporate domain knowledge via custom layers or regularizers... fem_output = CustomFEMLayer()(hidden_layers) pde_loss = AdditiveConstraintLayer(physics_constraints)(fem_output) output_layer = Dense(units=1, use_bias=False)(pde_loss) full_model = Model(inputs=input_layer, outputs=output_layer) optimizer = Adam(lr=0.001) full_model.compile(optimizer=optimizer, loss='mse') return full_model class CustomFEMLayer(Layer): """A placeholder class representing integration points where actual FE calculations occur.""" pass class AdditiveConstraintLayer(Layer): def __init__(self, constraints=None, *args, **kwargs): super().__init__(*args, **kwargs) self.constraints = constraints if isinstance(constraints, list) else [] def call(self, inputs): penalty_terms = sum([c(inputs) for c in self.constraints]) return inputs + penalty_terms ``` 上述代码片段展示了一个简单的构建流程概览图样例说明如何创建这样的复合型机器学习模型实例对象[^2]。 #### 应用案例分析 实际运用当中,这类集成方案已经被成功尝试解决诸如热传导问题、弹性力学预测等多个典型课题上取得了良好成效。例如,在某次实验里研究人员利用该策略快速估算出了不同工况条件下金属构件表面温度分布情况,相比单纯依靠传统CFD工具耗时更短同时也达到了相当满意的准确性指标范围之内。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhemgLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值