卷积核分解、深度可分离卷积

卷积核分解

参考于:《深度学习与目标检测》 杜鹏 仅供学习交流

GoogLeNet团队在Inception v2 :较大尺寸的卷积核可以带来较大的感受野,但也会带来更多的参数和计算量。
用两个连续的3X3的卷积核来代替一个5X5的卷积核,在保证感受野大小不变的同时可以减少参数个数,如下图
在这里插入图片描述
两个3X3的卷积核的参数数量为18,一个5X5的卷积核的参数数量为25,由此可见参数数量得以减少,且感受野大小不变。
一个nXn的卷积核可以由1Xn和nX1的卷积核组合代替。例如,当n为3时
在这里插入图片描述
在网络低层使用这个方法不好,在中等大小的特征图上使用这个方法效果比较好,建议在第12层到第20层使用。

深度可分离卷积

https://zhuanlan.zhihu.com/p/92134485

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积操作(Convolution)是一种常见的神经网络操作,它在图像处理、语音识别、自然语言处理等领域都得到广泛应用。卷积操作的核心思想是通过卷积核对输入数据进行扫描,提取特征信息。 深度可分离卷积(Depthwise Separable Convolution)是一种卷积操作的变种。它将标准的卷积操作分解成两个步骤:深度卷积和逐点卷积。深度卷积只涉及通道之间的卷积,而逐点卷积只涉及每个通道内的卷积。这种分解可以大大减少计算量和参数数量。 具体来说,深度可分离卷积首先对每个通道内的每个位置应用不同的卷积核,然后将通道内的结果加起来。接下来,逐点卷积将对所有通道应用一个 $1 \times 1$ 的卷积核,以组合不同通道的特征。这个过程可以用下面的公式表示: $$y = PW(DW(x))$$ 其中,$x$ 是输入数据,$DW$ 是深度卷积操作,$PW$ 是逐点卷积操作,$y$ 是输出数据。 深度可分离卷积相对于标准卷积操作的主要优点有: 1. 计算量大大减少:深度卷积和逐点卷积的计算量都比标准卷积小得多,因此总体计算量也大大减少。 2. 参数数量减少:深度卷积和逐点卷积卷积核数量都比标准卷积少,因此参数数量也减少了。 3. 更好的泛化性能:由于深度可分离卷积可以更好地捕捉局部特征,因此在一些图像分类、目标检测等任务中,它的泛化性能更好。 总之,深度可分离卷积是一种优秀的卷积操作,可以在保持模型准确率的同时大大减少计算量和参数数量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值