CVPR2022点云语义分割:Stratified Transformer for 3D Point Cloud Segmentation

Stratified Transformer for 3D Point Cloud Segmentation

本文中的Stratified Transformer是基于Transformer的点云语义分割模型,

该模型由多个下采样层和Transformer模块组成,其中第一层的下采样层由Point Embedding模块替换。使用Point Embedding模块的目的在于,作者认为在Point Embedding模块中聚合点的局部信息有助于第一个Transformer块捕获query和key之间的高层关系。上下采样网络如下图所示:
在这里插入图片描述

SSA: Stratified Self-attention

和其他Transformer模块相同,作者计算了QKV三个权重,这三个权重的尺寸都为在这里插入图片描述
其中,kt为第t个window中点的个数,Nh为head的个数,Nd为每个head的尺寸。
在这里插入图片描述
作者认为,由于每个query只关注自己窗口中的局部点,所以普通版本的Transformer块即使在窗口移位的情况下,有效接受域也有限,这会导致错误的预测。因此,作者提出了Stratified Key-sampling策略,如下图所示。
在这里插入图片描述
该策略将每个query的key采样分为两个分支:
第一个分支将空间划分为大小为Swin的windows,在其中寻找key_1;
第二个分支通过FPS进行下采样,使用更大的Swin_large来划分空间,并在其中寻找key_2,并将key_1和key_2合并。该模块有效的提高了模型的感受野,使得query feature可以有效聚合long-range上下文信息。

Contextual Relative Position Encoding

尽管Transformer块的输入已经包含xyz位置,但当网络变深时,细粒度的位置信息可能会在高层特征中丢失。为了更好地利用位置信息,作者采用了一种基于上下文的自适应相对位置编码方案。首先求query和key之间的相对位置:
在这里插入图片描述
为了将相对坐标映射到相应的位置编码,维护了三个可学习的查找表Tx,Ty,Tz。将相对坐标ri,j,m映射为表的索引:
在这里插入图片描述
其中Swin是是窗口大小,Squant为量化尺寸。通过查找table来检索对应的索引嵌入,然后求和得到的位置编码:
在这里插入图片描述
XYZ分别对应一个table。query,key和value的table不共享,因此有三组table。
在这里插入图片描述

Memory-efficient Implementation

在这里插入图片描述
内存的高效实现方法如上图所示。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 3
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员毛师傅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值