本程序基于百度飞浆 PaddlePaddle 平台完成。
该程序通过DeepLabv3+模型完成一键抠图。
encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率,在 PASCAL VOC 2012 dataset取得新的state-of-art performance,该PaddleHub Module使用百度自建数据集进行训练,可用于人像分割,支持任意大小的图片输入。
在完成一键抠图之后,通过图像合成,实现有趣的应用!
程序实现
首先安装 paddlehub
!pip install paddlehub==1.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
然后查看下我要要抠图的目标文件
# 待预测图片
img_name = 'ty.jpg'
test_img_path = ["./"+img_name]
#test_img_path = ["./meditation.jpg"]
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread(test_img_path[0])
# 展示待预测图片
plt.figure(figsize=(10,10))
plt.imshow(img)
plt.axis('off')
plt.show()