复现《NC》图表(二):R语言一键画表达量箱线图并添加显著性

本文介绍了如何使用R语言通过循环批量画出箱线图,复现《NC文章》中的关键图例,包括数据整理、代码细节和最终效果展示,适用于快速生成大量相似图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们接着重现NC这篇文章的Figure2,这篇文章里有很多这样的箱线图,这也是这个重现系列重点要讲的内容。原文作者提供了这部分代码,对于所有图提供了详细的数据,可以参考作图。

图片

这里重现的重点在于批量画图,利用循环,可以一劳永逸,一次性画图多个图,省时省力!

1、数据整理

画图数据需要两个文件,一个是表达量数据,列为样本,行为基因。另外一个是注释信息,是关于样本分组的。

表达数据:

图片

样本信息:

图片

2、作图详细过程

第一步加载需要的R包:


library(RColorBrewer)
library(ggpubr)
library(ggplot2)
library(cowplot)

第二步加载数据并进行处理:这里增添一个小细节,也是小编初学R遇到的问题。假设有一个几千行的表达矩阵,我只想挑选几十个基因的表达数据,用Excel的搜索工具显然不现实。用R解决就很简单,首先创建一个需要基因(行名)的向量,然后用它去提取行名为向量的数据即可!


setwd("D:/生物信息学")
Exp <- read.csv("Exp.csv",header=T,row.names=1)#读入源文件
gene <- c("CD28","CD3D","CD8A","LCK",
          "GATA3","EOMES","IL23A","CXCL8",
          "IL1R2","IL1R1","MMP8","MMP9")#这里我们只选择这几个基因做数据
gene <- as.vector(gene)
Exp <- log2(Exp+1) #因为是FPKM数据,标准化一下
Exp_plot <- Exp[,gene]#提取需要作图得基因表达信息

第三步加载样本信息:

#加载样本信息
info <- read.csv("info.csv",header=T)
Exp_plot<- Exp_plot[info$Sample,]
Exp_plot$sam=info$Type
Exp_plot$sam <- factor(Exp_plot$sam,levels=c("Asymptomatic","Mild","Severe","Critical"))

第四步设置分组的颜色:就如同用prism做图一样,不同组用不同颜色表示。

col <-c("#5CB85C","#337AB7","#F0AD4E","#D9534F")

第五步进行循环:详细的代码解释也注释出来了。

plist2<-list()
for (i in 1:length(gene)){
  bar_tmp<-Exp_plot[,c(gene[i],"sam")]
  colnames(bar_tmp)<-c("Expression","sam")
  my_comparisons1 <- list(c("Asymptomatic", "Mild")) 
  my_comparisons2 <- list(c("Asymptomatic", "Severe"))
  my_comparisons3 <- list(c("Asymptomatic", "Critical"))
  my_comparisons4 <- list(c("Mild", "Severe"))
  my_comparisons5 <- list(c("Mild", "Critical"))
  my_comparisons6 <- list(c("Severe", "Critical"))
  pb1<-ggboxplot(bar_tmp,
                 x="sam",
                 y="Expression",
                 color="sam",
                 fill=NULL,
                 add = "jitter",
                 bxp.errorbar.width = 0.6,
                 width = 0.4,
                 size=0.01,
                 font.label = list(size=30), 
                 palette = col)+theme(panel.background =element_blank())
  pb1<-pb1+theme(axis.line=element_line(colour="black"))+theme(axis.title.x = element_blank())
  pb1<-pb1+theme(axis.title.y = element_blank())+theme(axis.text.x = element_text(size = 15,angle = 45,vjust = 1,hjust = 1))
  pb1<-pb1+theme(axis.text.y = element_text(size = 15))+ggtitle(gene[i])+theme(plot.title = element_text(hjust = 0.5,size=15,face="bold"))
  pb1<-pb1+theme(legend.position = "NA")#
  pb1<-pb1+stat_compare_means(method="t.test",hide.ns = F,
                              comparisons =c(my_comparisons1,my_comparisons2,my_comparisons3,my_comparisons4,my_comparisons5,my_comparisons6),
                              label="p.signif")
  plist2[[i]]<-pb1 
}

第六步排列图片,我们选择了12个基因,所以会有12张图,对其进行排列。

plot_grid(plist2[[1]],plist2[[2]],plist2[[3]],
                plist2[[4]],plist2[[5]],plist2[[6]],
                plist2[[7]],plist2[[8]],plist2[[9]],
                plist2[[10]],plist2[[11]],plist2[[12]],ncol=4)#ncol=4表示图片排为几列

最后画出来的图片如下:

图片

效果和原文一摸一样啊,剩下的进行排版修饰即可!学会这个技术可以一劳永逸了,不同一张一张画图,一次性出这么多图。可以用自己的数据试试手!

如果想要详细的数据代码注释,可关注公众号《KS科研分享与服务》留言或者联系作者,说明来意。

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值