论文阅读:SP-CIDS: Secure and Private Collaborative IDS for VANETs

2 篇文章 0 订阅
2 篇文章 0 订阅

SP-CIDS: Secure and Private Collaborative IDS for VANETs

原文指引

摘要

车载自组织网络(VANET)作为智能交通系统(ITS)的骨干,为乘客提供安全和舒适。然而VANET容易受到来自个人或分布式攻击者的关于破坏数据隐私网络服务的攻击。本文提出了一种安全、专用的协同入侵检测系统(SP-CIDS),用于检测网络攻击并缓解安全问题。在SP-CIDS中,使用了基于交替方向乘数法(ADMM)的分布式机器学习(DML)模型,该模型利用了学习过程中车辆间协作的潜力,以提高IDS的存储效率、准确性和可扩展性。然而,在这种协作可能存在严重的数据隐私问题,CIDS可以充当恶意系统,可以访问学习过程的中间阶段。此外,SP-CIDS系统使用差异隐私(DP)技术解决上述与基于DML的CIDS相关的数据隐私风险。SP-CIDS系统采用逻辑回归、朴素贝叶斯和集成分类器进行评估。仿真结果表明,专用集成分类器能够保证训练数据的DP安全性,并达到96.94%的准确率。

问题描述

入侵检测系统通过监视主机或网络,分析审计日志来查找恶意行为或违反安全策略的行为。传统的基于主机(HID)或网络(NID)存在例如单点故障和低可扩展性等缺点。在VANET这种分布式环境中,Collaborative IDS(CIDS) 可以通过共享信息和计算资源来缓解缺陷。

CIDS由HIDS和NIDS的集合组成,允许资源共享和检测协作或分布式攻击。一般CIDS以下组件组成

  1. 本地监控器(local monitoring)
  2. 全局监控器(global monitoring)
  3. 关联和聚类(correlation and aggregation)
  4. 数据传播组件(data dissemination components)

CIDS系统通常会基于分布式机器学习(DML),用于探测已知和未知的攻击。一个基于DML的CIDS系统的关键安全需求是在不损害数据隐私的情况下促进ML模型的共享。DML容易受到inversion attack攻击,敌手可以通过学习结果反向推断出敏感训练数据。

贡献

提出一个基于Alternating Direction Method of Multipliers(ADMM),使用DML的安全隐私协同IDS——SP-CIDS,此框架下所有车辆协同创建一个全局分类器,并使用差分隐私来减弱数据泄露风险。

  • 一个高效的使用基于DML的ADMM的SP-CIDS被提出,可提高IDS的存储和计算效率。
  • 通过DP范式解决数据隐私问题,保护DML中训练数据的隐私。
  • 通过在SP-CIDS中使用基于私有集成的分类器,通过协作相邻车辆创建全局模型,从而提高CIDS的准确性

相关工作

  • 集中式CIDS:协作式入侵检测,使用集中式的协作模型来获取警报数据,容易受单点故障(SPoF)和性能问题。这些问题可由分层级式入侵检测系统(Hierarchical Intrusion Detection HIDE)system 缓解.
  • HIDE:由按层次排序的入侵检测代理组成。使用神经网络进行统计预处理和分类来进行异常检测。然而,由于警报在每一个级别上汇总细化,因此信息容易丢失。Large Scale Intrusion Detection
    (LarSID)可减轻这种丢失情况。

SP-CIDS 系统模型

每辆车有一个SP-CIDS系统,在VANET中创建一个ML模型来检测网络中的攻击。

  • 架构图:在这里插入图片描述
  • 模型中符号含义:

在这里插入图片描述

假设VANET中的该架构由四个主要组件构成:

A. Analysis Unit

AU(Application Unit )从OBU、邻居车辆和RSU中获取审计数据,检测例如数据包丢弃和复制等恶意行为。包括预处理本地监控器两部分

  • Pre-processing Unit:
    获取VANET实时数据,模型使用过滤其滤除噪声,不良和不完整数据。由于OBU的不稳定连接等问题,可能造成数据值缺失,因此需要使用代替平均值等数据处理方法。对数据进行采样和最大似然算法进一步归一化以进行有效处理
  • Local Monitoring Unit(LMU):
    接受来自预处理的数据,使用从GLU生成的全局模型进行分析。LMU操作如下:

来自车辆集合 N \mathcal{N} N的车辆 l l l l l l的分类器 f l : X → Y f_l:X\rightarrow Y fl:XY使用训练数据集 D l D_l Dl,将每一个输入点 x 1 ∈ X x_1\in X x1X分类到一个输出 y 1 ∈ y_1\in y1 {-1,1},其中-1代表正常行为,1代表入侵行为。一旦行为检测为恶意,LMU将拉响警报。如果用户更新了他们的分类器模型,那么通过初始化GLU来执行重新训练。

B. Global Learning Unit

初始化GLU后,使用安全且私有的DML算法来创建一个由VANET中的车辆协同训练的全局分类器。ADMM算法相比其他分散具有更好的收敛性。每个车辆使用其自己的标记训练数据来创建局部分类器,该局部分类器被迭代同步以实现全局分类器,该全局分类器相当于在所有车辆的总数据集上训练的分类器。

C. Communication Agent

通信代理作为连接本地IDS系统和其他车辆或RSU的通信枢纽。数据共享和警报传播通过该机制。它在每次ADMM迭代中连接其他车辆,以使用DSRC协议快速共享修改的参数。

D. Security and Privacy Manager

使用DP范式,该模块还控制添加到DML算法协作参数中的噪声水平。

  • 算法流程如图:

在这里插入图片描述

输入为网络审计数据,输出为向各车传播的入侵警报。
预处理关于VANET的审计数据。如果本地监控单元需要更新,则将预处理信息发送给全局学习单元(GLU),在GLU中更新分类器,再将更新好的分类器发送给本地监控单元。
本地分类器进行监控。

疑问:GLU在哪里,云上吗。

SP-CIDS的分布式学习

假定车辆只能和自己传输范围内的单跳车辆通信。
车辆 l l l由一系列带标记的训练数据集。整个网络拥有的全部数据集为 D ^ \hat{D} D^,单个的数据集 D D D描述的是应用程序中发生的活动以及车载单元之间的通信。
全局学习单元的目标是基于实时VANET环境下的混合训练数据集获得一个更高效的分类器。集中经验风险最小化(C-ERM)(不是很懂,可以参考这个看一下是什么意思)
使用ADMM机制进行分散,来适应VANET的分布式特性。

  • 集中式ERM优化

基于C-ERM的ML优化问题就是找到一个分类器,使用总体数据集 D ^ \hat{D} D^对输入进行分类。
假定Centralize ML algorithm的目标函数为 V 1 ( f ∣ D ^ ) V_1(f|\hat{D}) V1(fD^)
min ⁡ f \underset{f}{\min} fmin V 1 ( f ∣ D ^ ) : = K 1 n l ∑ l = 1 N ∑ i = 1 n l φ ( y i l , f T x i l ) + k R ( f ) V_1(f|\hat{D}):=\frac{K_1}{n_l}\sum^{N}_{l=1}\sum^{n_l}_{i=1}\mathcal{\varphi}(y_{il},f^Tx_{il}) + kR(f) V1(fD^):=nlK1l=1Ni=1nlφ(yil,fTxil)+kR(f)

  • 分布式ERM优化

公式(1)中的优化问题使用ADMM进行去中心化。每一个车辆 l l l有其自己的分类器 f l f_l fl,满足全局一致性约束。 f 1 = f 2 = . . . = f N f_1 = f_2 = ...=f_N f1=f2=...=fN

SP-CIDS的分布式学习算法是通过将ADMM的迭代过程结合到集中式ML算法中而获得的。
车辆更新自己的分类器后使用通信代理将 f l ( t + 1 ) f_l(t+1) fl(t+1)广播给自己的邻居。
在这里插入图片描述
每次迭代车辆会更新自己的分类器 f l ( t ) f_l(t) fl(t)和dual variable λ l ( t ) \lambda_l(t) λl(t).
车辆之间唯一交换的信息是分类器,避免了直接交换数据造成的泄露。

SP-CIDS的基于差分隐私的分布式机器学习

在基于ADMM的分布式学习算法中,虽然数据没有被明确共享,但是协作具有潜在的隐私风险,例如对数据调节的免疫力以及对噪声和错误的鲁棒性,使用动态规划的概念可以减轻这些风险。

A. 敌手模型

  • 成为系统的恶意内部人员,例如合法车辆或RSU
  • 在每次迭代中访问分布式学习算法的输出以及最终输出
  • 在分布式学习算法的每次迭代期间观察分类器(fl)广播以收集关于机密数据点的信息
  • 考虑这个系统的一个潜在对手,他知道数据集中除数据点(xs,ys)之外的所有数据。恶意节点可以通过观察非私有学习算法每次迭代的输出来提取车辆中存储的敏感数据(xs,ys)的信息。在SP-CIDS框架中,通过在ADMM中共享的中间分类器中引入随机性来实现数据修改。
  • 使用拉普拉斯噪声机制来促进DP
    在这里插入图片描述
    个体分类器的结果将被聚集,并且具有多数投票的决定是集成分类器的最终决定。

随着准确性的提高,对手可以通过统计推断机制推断更多关于训练数据的信息。因此,在训练数据的私密性和实用性之间存在权衡,这是通过ε参数控制的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值