[UOJ164]V

题目

传送门 to UOJ(看不了可以看下方的简化题意)

思路

简化题意

一个长度为 n n n 的序列,支持五种操作:

  • 区间加: ∀ a ∈ [ l , r ] , a ′ = a + x \forall a\in[l,r],a'=a+x a[l,r],a=a+x
  • 区间减: ∀ a ∈ [ l , r ] , a ′ = max ⁡ ( a − x , 0 ) \forall a\in[l,r],a'=\max(a-x,0) a[l,r],a=max(ax,0)
  • 区间赋值: ∀ a ∈ [ l , r ] , a ′ = x \forall a\in[l,r],a'=x a[l,r],a=x
  • 单点查询:求 a x a_x ax 的值。
  • 单点历史最值查询:求历史上任意一个时刻, a x a_x ax 达到过的最大值。

数据范围是 n , m ≤ 5 × 1 0 5 n,m\le 5\times 10^5 n,m5×105

对于前四个操作

将操作写为 f ( x ) = max ⁡ ( x + a , b ) f(x)=\max(x+a,b) f(x)=max(x+a,b) ,那么对应的懒标记如下。下面用 ⟨ a , b ⟩ \langle a,b\rangle a,b 表示 max ⁡ ( x + a , b ) \max(x+a,b) max(x+a,b)

  • 区间加:新增 ⟨ x , − ∞ ⟩ \langle x,-\infty\rangle x, 。原理是 ∀ a ∈ R , max ⁡ ( a + x , − ∞ ) = a + x \forall a\in\R,\max(a+x,-\infty)=a+x aR,max(a+x,)=a+x
  • 区间减:新增 ⟨ − x , 0 ⟩ \langle -x,0\rangle x,0 。原理是 ∀ a ∈ R , max ⁡ ( a − x , 0 ) = max ⁡ ( a − x , 0 ) \forall a\in\R,\max(a-x,0)=\max(a-x,0) aR,max(ax,0)=max(ax,0)
  • 区间赋值:新增 ⟨ − ∞ , x ⟩ \langle -\infty,x\rangle ,x 。原理是 ∀ a ∈ R , max ⁡ ( a − ∞ , x ) = x \forall a\in\R,\max(a-\infty,x)=x aR,max(a,x)=x

如何合并呢?很简单的。

max ⁡ [ max ⁡ ( x + a , b ) + c , d ] = max ⁡ [ x + a + c , max ⁡ ( b + c , d ) ] \max[\max(x+a,b)+c,d]=\max[x+a+c,\max(b+c,d)] max[max(x+a,b)+c,d]=max[x+a+c,max(b+c,d)]

也就是说, ⟨ a , b ⟩ × ⟨ c , d ⟩ = ⟨ a + c , max ⁡ ( b + c , d ) ⟩ \langle a,b\rangle\times\langle c,d\rangle=\langle a+c,\max(b+c,d)\rangle a,b×c,d=a+c,max(b+c,d)

注意到我们并没有用到 x x x 的值,所以其满足结合律。毕竟最后的函数是唯一的!

对于第五个操作

将一群操作 { f i } \{f_i\} {fi} 的最值记为 g ( x ) g(x) g(x) 。也就是说, g ( x ) = max ⁡ { f 1 ( x ) , f 2 [ f 1 ( x ) ] , f 3 { f 2 [ f 1 ( x ) ] } , …   } g(x)=\max\{f_1(x),f_2[f_1(x)],f_3\{f_2[f_1(x)]\},\dots\} g(x)=max{f1(x),f2[f1(x)],f3{f2[f1(x)]},}

这样的 g ( x ) g(x) g(x) ,非常抱歉地通知您,还是 ⟨ p , q ⟩ \langle p,q\rangle p,q 的形式

为什么呢?很好证明。

max ⁡ [ max ⁡ ( x + a , b ) , max ⁡ ( x + c , d ) ] = max ⁡ [ x + max ⁡ ( a , c ) , max ⁡ ( b , d ) ] \max[\max(x+a,b),\max(x+c,d)]=\max[x+\max(a,c),\max(b,d)] max[max(x+a,b),max(x+c,d)]=max[x+max(a,c),max(b,d)]

也就是说, ⟨ a , b ⟩ + ⟨ c , d ⟩ = ⟨ max ⁡ ( a , c ) , max ⁡ ( b , d ) ⟩ \langle a,b\rangle+\langle c,d\rangle=\langle\max(a,c),\max(b,d)\rangle a,b+c,d=max(a,c),max(b,d)

用群论的话来说: { max ⁡ ( a + x , b ) ∣ a , b ∈ R } \{\max(a+x,b)|a,b\in\R\} {max(a+x,b)a,bR} × \times ×(叠加)操作与 max ⁡ \max max 操作下构成一个群。

此时,如果我们用函数 g g g 来维护这个最值,可以预见,这并不是什么麻烦的事情。

我们已经知道了 f = { f 1 , f 2 , f 3 , … , f v } f=\{ f_1,f_2,f_3,\dots,f_v\} f={f1,f2,f3,,fv} 的最值函数 g 1 g_1 g1 ,又知道 { f v + 1 , f v + 2 , … , f k } \{ f_{v+1},f_{v+2},\dots,f_k\} {fv+1,fv+2,,fk} 的最值函数 g 2 g_2 g2 ,我们就可以说:

g ( x ) = max ⁡ { g 1 ( x ) , g 2 [ f ( x ) ] } g(x)=\max\{g_1(x),g_2[f(x)]\} g(x)=max{g1(x),g2[f(x)]}

总结

对于一次添加 f 0 ( x ) = { f i ( x ) } , g 0 ( x ) f_0(x)=\{f_i(x)\},g_0(x) f0(x)={fi(x)},g0(x) 的操作,我们进行的变换为

f ′ ( x ) = f 0 [ f ( x ) ] , g ′ ( x ) = max ⁡ { g ( x ) , g 0 [ f ( x ) ] } f'(x)=f_0\big[f(x)\big],g'(x)=\max\Big\{g(x),g_0\big[f(x)\big]\Big\} f(x)=f0[f(x)],g(x)=max{g(x),g0[f(x)]}

如果只操作一次 f f f ,那么 g ( x ) = f ( x ) g(x)=f(x) g(x)=f(x) 。也即,集合大小为一的 { f } \{f\} {f} ,其最值函数 g = f g=f g=f

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
inline int readint(){
	int x; scanf("%d",&x); return x;
}
# define MB template<class T>
MB void getMin(T &a,const T &b){ if(b < a) a = b; }
MB void getMax(T &a,const T &b){ if(a < b) a = b; }
# undef MB // 模板 

const int MaxN = 500005;
typedef long long int_;
const int_ infty = (1ll<<60);

int n, m; int_ dnr[MaxN];
void input(){
	n = readint(), m = readint();
	for(int i=1; i<=n; ++i)
		dnr[i] = readint();
}

struct Pair{ // named "Pair", actually "Function"
	int_ one, two; // f(x) = max(x+one,two)
	Pair(){ one = two = -infty; }
	Pair(int_ O,int_ T){
		one = O, two = T;
		if(one < -infty) one = -infty;
		if(two < -infty) two = -infty;
	}
	int_ operator[](const int &x) const {
		if(x == 0) return one;
		if(x == 1) return two;
		return -infty;
	}
	static Pair I(){ // f(x) = x
		return Pair(0,-infty);
	}
	int_ operator()(const int &x){
		return max(x+one,two);
	}
};
Pair operator * (const Pair &a,const Pair &b){
	return Pair(a[0]+b[0],max(a[1]+b[0],b[1]));
} // 返回的f(x) = fb[fa(x)]
Pair operator & (const Pair &a,const Pair &b){
	return Pair(max(a[0],b[0]),max(a[1],b[1]));
} // 返回的f(x) = max[fa(x),fb(x)]
Pair& operator &= (Pair &a,const Pair &b){
	return a = (a & b); // & 满足交换律
}
class SegmentTree{
	Pair data[MaxN<<2][2]; // val & maxV
	# define id(l,r) ((l+r)|(l!=r))
	void change(int o,Pair p[]){
		data[o][1] &= (data[o][0]*p[1]);
		data[o][0] = data[o][0]*p[0];
	}
	# define mid ((l+r)>>1)
	void pushDown(int l,int r){
		int o = id(l,r);
		change(id(l,mid),data[o]);
		change(id(mid+1,r),data[o]);
		data[o][0] = data[o][1] = Pair::I();
	}
public:
	void clear(){
		for(int i=0; i<(MaxN<<1); ++i)
			data[i][0] = data[i][1] = Pair::I();
	}
	SegmentTree(){ clear(); }
	void modify(int ql,int qr,Pair d[],int l=1,int r=n){
		if(ql <= l and r <= qr)
			return change(id(l,r),d);
		pushDown(l,r);
		if(ql <= mid) modify(ql,qr,d,l,mid);
		if(mid < qr) modify(ql,qr,d,mid+1,r);
	}
	int_ queryNow(int qid,int x,int l=1,int r=n){
		if(l == r) return data[id(l,r)][0](x);
		pushDown(l,r);
		if(qid <= mid) return queryNow(qid,x,l,mid);
		else return queryNow(qid,x,mid+1,r);
	}
	int_ queryAll(int qid,int x,int l=1,int r=n){
		if(l == r) return data[id(l,r)][1](x);
		pushDown(l,r);
		if(qid <= mid) return queryAll(qid,x,l,mid);
		else return queryAll(qid,x,mid+1,r);
	}
	# undef mid
	# undef id
} ppl;
Pair gb[2];
void solve(){
	ppl.clear();
	for(int opt,l,r,x; m; --m){
		opt = readint();
		if(opt <= 3)
			l = readint(), r = readint(), x = readint();
		else x = readint();
		if(opt == 1)
			gb[0] = gb[1] = Pair(x,-infty);
		if(opt == 2)
			gb[0] = gb[1] = Pair(-x,0);
		if(opt == 3)
			gb[0] = gb[1] = Pair(-infty,x);
		if(opt <= 3)
			ppl.modify(l,r,gb);
		if(opt == 4)
			printf("%lld\n",ppl.queryNow(x,dnr[x]));
		if(opt == 5)
			printf("%lld\n",ppl.queryAll(x,dnr[x]));
	}
}

int main(){
	input(), solve();
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值