[DarkBZOJ2440]完全平方数

题目

传送门 to DarkBZOJ

题目概要
求这个集合中第 k k k 小的值:
{ x ∈ N +    ∣    μ ( x ) ≠ 0 } \big\{x\in\N^+\;|\;\mu(x)\ne 0\big\} {xN+μ(x)=0}

数据范围与约定
k ⩽ 1 0 9 k\leqslant 10^9 k109 。数据组数 T ⩽ 50 T\leqslant 50 T50 。事实上这个数据范围非常宽松。

思路

其实蛮简单一道题?

我一开始想,每个质因数的指数不超过 1 1 1,那么最多只需要 30 30 30 个质数。于是我把最小的 30 30 30 个质数乘起来,发现爆 l o n g    l o n g \tt long\;long longlong 了,以为不可做……

仔细想想,只用前 30 30 30 个质数固然可以凑出 k k k 个数,但是使用其他的质数,也可以得到一些数字,并且比只用前 30 30 30 个质数的最大数更小。一个非常粗略的估计是, x x x 以内的质数个数约为 x ln ⁡ x \frac{x}{\ln x} lnxx,假如这个数大于 k k k,就一定可行了。 x = 1 0 11 x=10^{11} x=1011 时,已经满足,显然真正的第 1 0 9 10^9 109 个数会小很多。

既然上界是有限的,就可以进行二分。既然不能含有平方因子,就直接做容斥,
∑ p 1 ∈ P ⌊ n p 1 2 ⌋ − ∑ p 1 , p 2 ∈ P ⌊ n p 1 2 p 2 2 ⌋ + ⋯ \sum_{p_1\in P}\left\lfloor\frac{n}{p_1^2}\right\rfloor-\sum_{p_1,p_2\in P}\left\lfloor\frac{n}{p_1^2p_2^2}\right\rfloor+\cdots p1Pp12np1,p2Pp12p22n+

就可以用到 μ \mu μ 了,可以写成
∑ x = 2 + ∞ μ ( x ) ⌊ n x 2 ⌋ \sum_{x=2}^{+\infty}\mu(x)\left\lfloor\frac{n}{x^2}\right\rfloor x=2+μ(x)x2n

直接枚举 x x x,复杂度是 O ( n ) \mathcal O(\sqrt{n}) O(n ) 的。是否能做到更快呢?显然这里有很明显的整除分块倾向。

然而我一估算: x ∈ [ n 1 / 4 , n 1 / 2 ] x\in[n^{1/4},n^{1/2}] x[n1/4,n1/2] 时, ⌊ n x 2 ⌋ ∈ [ 1 , n ] \lfloor\frac{n}{x^2}\rfloor\in[1,\sqrt n] x2n[1,n ],两边都是 O ( n ) \mathcal O(\sqrt n) O(n ) 的范围,那么约莫是一一对应,故复杂度始终为 n \sqrt n n 。可是仿照整除分块的复杂度证明:

  • x ⩽ n 1 / 3 x\leqslant n^{1/3} xn1/3 时,最多 O ( n 3 ) \mathcal O(\sqrt[3]{n}) O(3n ) x x x
  • x > n 3 x>\sqrt[3]{n} x>3n ,有 ⌊ n x 2 ⌋ ⩽ n 3 \lfloor\frac{n}{x^2}\rfloor\leqslant\sqrt[3]{n} x2n3n

所以整除分块的复杂度是 O ( n 3 ) \mathcal O(\sqrt[3]{n}) O(3n ) 的,是个大优化!求 x x x 的范围,即求 n v    ( v ⩽ n 3 ) \sqrt{\frac{n}{v}}\;(v\leqslant\sqrt[3]{n}) vn (v3n ),可以预处理实数值 v \sqrt{v} v ,每组询问求一次 n \sqrt{n} n 的实数值,用 x = ⌊ n v ⌋ x=\lfloor\frac{\sqrt{n}}{\sqrt{v}}\rfloor x=v n 作为估计值,然后牛顿迭代一次、微调一次。

总时间复杂度 O ( n + T n 3 log ⁡ n ) \mathcal O(\sqrt n+T\sqrt[3]{n}\log n) O(n +T3n logn)

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <cmath>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; !isdigit(c); c=getchar())
		if(c == '-') f = -f;
	for(; isdigit(c); c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
typedef long long int_;
inline void writeUnsigned(const unsigned &x){
	if(x > 9) writeUnsigned(x/10);
	putchar(char((x-x/10*10)^48));
}

const int MAXN = 40600;
int primes[MAXN], primes_size;
bool isPrime[MAXN]; int mu[MAXN];
int ddg[MAXN]; ///< prefix sum of @a mu
void sieve(const int &n){
	memset(isPrime+2,true,n-1);
	for(int i=2; i<=n; ++i){
		if(isPrime[i]) mu[primes[++ primes_size] = i] = -1;
		for(int j=1; j<=primes_size&&primes[j]<=n/i; ++j){
			isPrime[i*primes[j]] = false;
			if(i%primes[j]) mu[i*primes[j]] = -mu[i];
			else { mu[i*primes[j]] = 0; break; }
		}
	}
	rep(i,mu[1]=1,n) ddg[i] = ddg[i-1]+mu[i];
}

const int BOUND = 4641;
double pfg[BOUND+1]; // square root
int_ solve(const int_ &n){
	int_ res = 0; int bound;
	for(int i=1; true; ++i){
		res += ((n/i)/i)*mu[i];
		if(n/i/i < i){ bound = i; break; }
	}
	if(bound > (n-1)/bound) return res;
	double sqrtn = sqrt(n);
	for(int v=1,l,r=int(sqrtn); true; ++v,r=l){
		l = int(sqrtn/pfg[v+1]);
		/// do Newton Iteration once
		l = int((l+(n/(v+1)/l))>>1);
		if(l > n/(v+1)/l) -- l; // floor
		if(l <= bound){ // exit
			res += int_(ddg[r]-ddg[bound])*v;
			break; // the last shot
		}
		res += int_(ddg[r]-ddg[l])*v;
	}
	return res;
}

int main(){
	sieve(MAXN-5); // get mu
	rep(i,1,BOUND) pfg[i] = sqrt(i);
	for(int T=readint(),k; T; --T){
		k = readint();
		unsigned l = 0, r = 1644934081, x;
		for(x=r>>1; l!=r; x=((l+r)>>1))
			(solve(x) >= k) ? (r = x) : (l = x+1);
		writeUnsigned(l), putchar('\n');
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值