关于单应性矩阵的若干思考

1 名词解释

        单应与射影变换是同义的。射影变换描述的是SE(2)到SE(2)的映射关系。映射与变换同义。

映射h:SE(2)到SE(2)是射影映射的充要条件是:存在一个3x3非奇异矩阵H,使得任何一个用矢量x表示的点都满足h(x) = Hx.

射影变换实际上是一个映射群,即射影变换群。射影变换群\supseteq仿射群\supseteq欧式群。因此单应性矩阵是可以描述仿射映射的。透视变换是一种特殊的射影变换,透视变换本身不构成透视变换群,即透视变换的复合不一定是透视变换,但属于射影变换。

 2 透视变换

        透视变换、透视投影、小孔摄影几何同义。如前所述平面的透视投影可用单应性矩阵 H 描述。

        消影点:直线上的无穷远处在图像上的投影点。

        消影线:平面的无穷远处在图像上的投影直线。

        消影点与消影线形成的根本原因是线/面上的点无法越过 经过投影中心且平行于该线/面的线/面 进行投影,亦即具有边界。

        消影线的求法:在摄像机欧氏坐标系下,平面集(法向量为n)的消影线是 I = K^(-T) n = K^(-T) · R · (0; 0; 1)。其中,n 为相机坐标系下的法向量表达,而不是世界坐标系,是图像平面上的直线,也就意味着 I 是图像坐标系下的方向向量,因此 I 的方程由 (u, v, 1) · I 给出

3 由(u,v)求相机在物平面上的正投影位置

        相机在物平面坐标系下的位置:分解H = K[r1, r2, t],其中R = [r1, r2, r3 = r1 x r2],则物平面坐标系下相机的位置Pc = -R^(-1)·t。

        相机在物平面坐标系下的正投影位置:

        1)去掉Pc的z维度;

        2)根据像素坐标反算。s(u, v, 1) = K R [0,0,0; 0, 0, 0;0, 0, 1]R^(-1) t 得到 (u, v),再通过 H 反算。这里的本意是想推导出(u, v) 无关于K R t 而只关于 H 的的表达式,但暂时没推出来;

        3)计算图像鸟瞰图的左右边界的交点。从实验中来看,正投影位置好像是交点位置,但暂未从几何或代数上进行证明。  更新:几何法证明左右边界的交点与正投影位置不重合,但近似。

4 单应性矩阵的群特性

        由于单应性矩阵是射影变换群,因此,单应矩阵的复合也是单应矩阵,并且具有尺度意义下的封闭特性:Hac ≃ Hab * Hbc。

        需要注意的是,通常情况下对单应性矩阵的求解是带噪声的Ransac法,因此在噪声的情况下求解的单应矩阵序列不一定满足上述封闭特性,例如:

        令pts_a ≡ Hab * pts_b,且 pts_a = Hac * pts_c;  pts_b = Hbc * pts_c; 对 pts_c 施加噪声后,Ransac法分别求解 Hac 和 Hbc。

        a. 若选用的dst相同(即都是pts_c,意味着在相同的坐标系空间下进行Ransac),则 Hac 、Hbc 和 Hab 满足封闭特性;

        b. 若选用的dst不同(意味着在不同的坐标系空间下进行Ransac),则 Hac 、Hbc 和 Hab 不满足封闭特性;

        c. 若噪声施加对象不一样,则不满足封闭特性。

一定要注意在何种空间下进行Ransac !!!

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值