opencv 模板匹配

import cv2
import numpy as np


def cv_show(neme, img):
    # cv2.namedWindow(neme, cv2.WINDOW_NORMAL)
    cv2.imshow(neme, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 大图
img_rgb = cv2.imread('0.jpg')
# 灰度图
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
# 小图
template = cv2.imread('0_1.jpg', 0)

h, w = template.shape[:2]

# h,w=template.shape[:2]
# 模板匹配 参数:(图片,,图片,方法6种选--尽量用归一化的) 左上角定位
# 小图片匹配大图片的位置,拼图一样,将小图片作为类似卷积核一样,去由左至右,上至下进行扫描
# 小图片的每个像素点 0~255,去减大图片的像素点,看结果,越小的越匹配概率越高
# 原理 图片1=A*B  图片2=a*b  (A-a+1)*(B-b)  大小=shape值 长*宽=A*B
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
#  #最小值,最大值,最小值位置,最大值位置=cv2.minMaxLoc
# #是将所有的匹配,找出最小或者最大的点,因为是上至下,左至右的扫描方法,所以左上角的是最小值的最新被发现的
# min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(res)  #给自己看的,程序中不需要
# 取匹配程度大于%80的坐标
threshold = 0.8

loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号便是可选参数
    bottom_right = (pt[0] + w, pt[1] + h)
    cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)
cv2.imshow('sd', img_rgb)
cv2.waitKey(0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

默执_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值