pytorch框架--网络方面--优化器

优化器

import torch.optim as optim

# dir查看, 里面支持的优化器
# 'ASGD', 'Adadelta', 'Adagrad', 'Adam', 'AdamW', 'Adamax', 'LBFGS', 'NAdam',
# 'Optimizer', 'RAdam', 'RMSprop', 'Rprop', 'SGD', 'SparseAdam'

# 模型, 学习率,加权平均 动量算法
# 方法一 推荐
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

# 辅助方法
# 学习率每隔10轮变为原来的0.5
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)

# 方法二
# optimizer = optim.Adam([var1, var2], lr=0.0001)
print(dir(optim))

优化器:默认10轮后loss没有变化自动减少学习率

from torch.optim.lr_scheduler import ReduceLROnPlateau
# 优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 减少LR
scheduler = ReduceLROnPlateau(optimizer, 'min')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

默执_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值