《Adaptive Universal Generalized Pagerank Graph Neural Network》阅读笔记

论文地址Adaptive Universal Generalized Pagerank Graph Neural Network

文章概览

作者指出了现如今多数GNN的两个缺陷:

  • 只适用于同构图;
  • 由于过平滑(over-smoothing),不能网络不能堆的特别深。

为此,作者从PageRank那里得到启发,提出了GPR-GNN模型,该模型解决了以上两个缺陷,作者在一系列同构图和异构图上进行了实验,结果表明在半监督结点分类任务上,GPR-GNN的性能相对于现有技术来说有显著的提升。

预备知识

论文符号表

符号说明
G = ( V , E ) G=(V,E) G=(V,E)无向图, V V V为顶点集, E E E为边集
C C C结点类别数
X ∈ R n × f \mathbf{X} \in \mathbb{R}^{n \times f} XRn×f结点的特征矩阵, n n n表示结点数, f f f表示特征维数, X i : \mathbf{X}_{i:} Xi:表示第 i i i行, X : j \mathbf{X}_{:j} X:j表示第 j j j
A \mathbf{A} A邻接矩阵
A ~ \widetilde {\mathbf{A}} A 添加自环后的邻接矩阵
A ~ s y m \widetilde {\mathbf{A}}_{sym} A sym对称的邻接矩阵

Kronecker delta function定义如下:
δ i j = { 0 if  i ≠ j , 1 if  i = j . \delta _{{ij}}={\begin{cases}0&{\text{if }}i\neq j,\\1&{\text{if }}i=j.\end{cases}} δij={01if i=j,if i=j.
同构等级定义如下:
H ( G ) = 1 ∣ V ∣ ∑ v ∈ V 结点 v 同标签的邻居数 结点 v 的邻居总数 \mathcal{H}(G) = \frac{1}{|V|} \sum_{v \in V}{\frac{\text{结点$v$同标签的邻居数}}{\text{结点$v$的邻居总数}}} H(G)=V1vV结点v的邻居总数结点v同标签的邻居数

同构等级越大,表示图的同构性越强。

相关理论

过平滑是怎样产生的

作者以17年提出的经典GCN为例,来解释过平滑产生的原因,该模型的数学形式为:
H G C N ( k ) = ReLU ⁡ ( A ~ s y m H G C N ( k − 1 ) W ( k ) ) , P ^ G C N = softmax ⁡ ( A ~ s y m H G C N ( K − 1 ) W ( k ) ) \mathbf{H}_{\mathrm{GCN}}^{(k)}=\operatorname{ReLU}\left(\tilde{\mathrm{A}}_{\mathrm{sym}} \mathbf{H}_{\mathrm{GCN}}^{(k-1)} \mathbf{W}^{(k)}\right), \hat{\mathbf{P}}_{\mathrm{GCN}}=\operatorname{softmax}\left(\tilde{\mathbf{A}}_{\mathrm{sym}} \mathbf{H}_{\mathrm{GCN}}^{(K-1)} \mathbf{W}^{(k)}\right) HGCN(k)=ReLU(A~symHGCN(k1)W(k)),P^GCN=softmax(A~symHGCN(K1)W(k))
其中 H GCN ( 0 ) = X \mathbf{H}^{(0)}_{\text{GCN}} = \mathbf{X} HGCN(0)=X,而 W ( k ) \mathbf{W}^{(k)} W(k)表示第 k k k层可学习的权重矩阵。如果去掉RELU并假设 k → ∞ k \rightarrow \infin k,则 lim ⁡ k → ∞ A ~ s y m k H ( 0 ) = H ( ∞ ) \lim _{k \rightarrow \infty} \tilde{\mathbf{A}}_{\mathrm{sym}}^{k} \mathbf{H}^{(0)}=\mathbf{H}^{(\infty)} limkA~symkH(0)=H() H ( ∞ ) \mathbf{H}^{(\infty)} H()的每行都只依赖对应结点的度(前提是图是不可约和非周期的)。这是个很重要的结论,该结论表明随着层数的加深,每个结点的特征将会被遗忘,使得结点间的区分性越来越低

图滤波

作者指出GPR-GNN与多项式的图滤波器是等价的,多项式滤波器的数学形式为:
∑ k = 0 K γ k A ~ s y m k \sum_{k=0}^{K} \gamma_{k} \tilde{\mathbf{A}}_{\mathrm{sym}}^{k} k=0KγkA~symk
可以看出它是一个邻接矩阵的 K K K次多项式,而其中的 γ k \gamma_{k} γk则是GPR-GNN中要学习的对应于各层的权重,通过学习可以得到一个最优的多项式滤波器。学习到的滤波器可以说是低通滤波器,也可以是高通滤波器。

作者在论文中还给出了一个很重要的结论:在一个连通图 G G G中,如果 ∀ k ∈ { 0 , 1 , . . . , K } , γ k ≥ 0 , ∑ k = 0 K γ k = 0 \forall k \in \{0,1,...,K\}, \gamma_{k} \geq 0, \sum_{k=0}^{K}{\gamma_{k}} = 0 k{0,1,...,K},γk0,k=0Kγk=0 ∃ k ′ > 0 \exist k' > 0 k>0使得 γ k ′ > 0 \gamma_{k'} > 0 γk>0,则得到一个低通滤波器。而如果 γ k = ( − α ) k , α ∈ ( 0 , 1 ) \gamma_{k} = (-\alpha)^{k}, \alpha \in (0,1) γk=(α)k,α(0,1) K K K足够大,则为一个高通滤波器

GPR-GNN详解

首先给出GPR-GNN模型的可视化图:
model

其所对应的数学形式为:
P ^ = softmax ⁡ ( Z ) , Z = ∑ k = 0 K γ k H ( k ) , H ( k ) = A ~ s y m H ( k − 1 ) , H i : ( 0 ) = f θ ( X i : ) \hat{\mathbf{P}}=\operatorname{softmax}(\mathbf{Z}), \mathbf{Z}=\sum_{k=0}^{K} \gamma_{k} \mathbf{H}^{(k)}, \mathbf{H}^{(k)}=\tilde{\mathbf{A}}_{\mathrm{sym}} \mathbf{H}^{(k-1)}, \mathbf{H}_{i:}^{(0)}=f_{\theta}\left(\mathbf{X}_{i:}\right) P^=softmax(Z),Z=k=0KγkH(k),H(k)=A~symH(k1),Hi:(0)=fθ(Xi:)
其中 f θ f_{\theta} fθ是用来生成隐状态特征 H ( 0 ) \mathbf{H}^{(0)} H(0)的神经网络。从形式上看,GPR-GNN很简单,先让结点特征过一个神经网络学习隐状态,然后便是进行 K K K轮的消息传递,最后的特征为 K K K层各自学得的表示的线性组合,其中线性组合的参数 γ k \gamma_{k} γk需要通过学习得到

作者在论文中还指出了他们的模型为什么可以解决过平滑问题,作者指出如果过平滑发生了,则该网络中的高层 k ≥ k ′ k \geq k' kk,其对应的权重 γ k \gamma_{k} γk会趋于0,使得其对最终的表示的影响减少,从而可以缓解过平滑。

图中标红色的为GPR-GNN的可学习参数。

实验

作者分别在合成数据集和真实数据集上都进行了相关的实验。对于合成数据集,作者使用cSBMs模型来生成图,实验过程中对于数据集的划分作者使用了两种模式:

  • 稀疏划分(sparse splitting):训练集/验证集/测试集 = 2.5%/2.5%/95%;
  • 密集划分(dense splitting):训练集/验证集/测试集 = 20%/20%/60%。

合成数据集上的结果

可以看出,GPR-GNN在异构图下,GPR-GNN比其他的基线模型的性能都要好,在同构图下GPR-GNN的性能也与其他基线模型相当,这说明了GPR-GNN的通用性。另外,从实验结果可以看出,当图的拓扑信息不强( ϕ = 0 \phi = 0 ϕ=0)时,GNNs的性能比不过传统的MLP。

ϕ < 0 \phi < 0 ϕ<0时为异构图, ϕ = 0 \phi =0 ϕ=0时拓扑图独立与 node 标签不相关, ϕ > 0 \phi > 0 ϕ>0时为同构图,且 ϕ \phi ϕ越小图异构性越强,越大图的同构性越强。

另外,作者还在一系列真实的同构和异构图上进行了实验,数据集的相关特征和实验结果展示如下:

真实图上的结果

从上图也可以看出,GPR-GNN也在这些数据集上也处于SOTA地位。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
《自适应通用广义PageRank神经网络》是在ICLR2021中发布的一篇论文。这篇论文提出了一种新的神经网络模型,称为自适应通用广义PageRank神经网络。 传统的神经网络通常使用节点和边的特征来进行节点分类和链接预测等任务,但在处理大规模时存在计算复杂度高和难以处理隐含结构的问题。为了解决这些问题,这篇论文引入了PageRank算法和广义反向传播法,在保留结构信息的同时有效地处理大规模数据。 这个模型的核心思想是将PageRank算法和神经网络相结合,通过模拟随机游走过程对节点和边进行随机采样,并利用广义反向传播法将PageRank值传播给相邻的节点。通过这种方式,网络可以在保留结构信息的同时,有效地进行节点嵌入和预测任务。 另外,这篇论文还提出了自适应的机制,允许网络根据不同的任务和数据集调整PageRank算法的参数。通过自适应机制,网络可以更好地适应不同的结构和特征分布,提高模型的泛化能力。 实验证明,这个自适应通用广义PageRank神经网络在节点分类、链路预测和社区检测等任务上都取得了比较好的效果。与传统的模型相比,该模型在保留结构信息的同时,具有更高的计算效率和更好的预测能力。 总的来说,这篇论文提出了一种新颖的神经网络模型,通过将PageRank算法与神经网络相结合,可以有效地处理大规模数据,并通过自适应机制适应不同的任务和数据集。这个模型在神经网络领域具有一定的研究和应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

斯曦巍峨

码文不易,有条件的可以支持一下

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值