矩阵分析(1)--一些基本概念

线性变换与矩阵

一个线性变换与一个矩阵相对应

例如,设有线性空间V1和V2,T为V1到V2上的某个线性变换,则有一个矩阵A与变换T对应

如何确定这个线性变换对应的矩阵?方法如下:

设{ e i {e_i} ei}为V1的n个基

设{ f j f_j fj}为V2的m个基

T : V 1 ⟶ V 2 T: V_1\longrightarrow V_2 TV1V2

对每个 e i e_i ei进行线性变换即

T e 1 = a 11 f 1 + a 21 f 2 + … + a m 1 f m T e 2 = a 12 f 1 + a 22 f 2 + … + a m 2 f m \begin{aligned} &T e_{1}=a_{11} f_{1}+a_{21} f_{2}+\ldots+a_{m 1} f_{m} \\ &T e_{2}=a_{12} f_{1}+a_{22} f_{2}+\ldots+a_{m 2} f_{m} \end{aligned} Te1=a11f1+a21f2++am1fmTe2=a12f1+a22f2++am2fm

⋮ \vdots

T e n = a 1 n f 1 + a 2 n f 2 + … + a m n f m T e_{n}=a_{1 n} f_{1}+a_{2 n} f_{2}+\ldots+a_{m n} f_{m} Ten=a1nf1+a2nf2++amnfm

在经过如上的n次变化后,把每行写成一个列(column),从而可以得到如下矩阵
A m × n = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 … a m n ] A_{m \times n}=\left[\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n} \end{array}\right] Am×n= a11a21am1a12a22am2a1na2namn
A is a matrix over C \mathbb{C} C

一些典型的基变换

考虑一个n维的线性空间V1,其基为{ e i e_i ei}。以及一个m维的线性空间V2,其基为{ f j f_j fj}。矩阵A代表从V1到V2上的线性变换对应的矩阵

A = [ a i j ] ↦ T : C n → C m A=\left[a_{i j}\right] \mapsto T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m} A=[aij]T:CnCm

  1. 空间V1找另一组新基 e ′ e' e

A表示: V1的基为{ e i e_i ei}、V2的基为{ f j f_j fj}时,变换T所对应的矩阵

B表示: V1的基为{ e i ′ e_i' ei}、V2的基为{ f j f_j fj}时,变换T所对应的矩阵

X表示: V1从基{ e i e_i ei}到基{ e i ′ e_i' ei}的线性变换 I V 1 I_{V_1} IV1对应的矩阵

则矩阵A=BX

其实很好理解,注意,矩阵的乘法是右边开始结合的。对等式A=BX考察等式右边: 先有X,X表示从{ e i e_i ei}指向{ e i ′ e_i' ei};然后是B,表示从{ e i ’ e_i’ ei}指向{ f j f_j fj};联合起来看,就是从{ e i e_i ei}指向{ f j f_j fj},也就是等式左边矩阵A的含义

在这里插入图片描述

  1. 空间V2找一组新基{ f j ′ f_j' fj}

在这里插入图片描述

  1. V1和V2都换一组新基

在这里插入图片描述

  1. 空间V1和V2为同一个空间的不同基,则

在这里插入图片描述

注: 此时矩阵A和矩阵B称为相似矩阵。换句话说,相似矩阵是同一个线性变换在不同基下的不同表示

下面讨论正交规范基(orthonormal bases)的形式,简写为o.n. bases

下面的5、6、7、8条分别与上面的1、2、3、4条有对应关系

  1. 对V1换基,则:

 different o.n. bases in  V 1 , same o.n. in  V 2 ↔ A = B U , U n × n  unitary  \text { different o.n. bases in } V_{1} \text {, same o.n. in } V_{2} \leftrightarrow A=B U, U \quad n \times n \text { unitary }  different o.n. bases in V1, same o.n. in V2A=BU,Un×n unitary 

unitary矩阵即酉矩阵(或称幺正矩阵)

  1. 对V2换基,则

 same o.n. in  V 1 , different o.n. in  V 2 ↔ A = V B , V m × m  unitary  \text { same o.n. in } V_{1} \text {, different o.n. in } V_{2} \leftrightarrow A=V B, V \quad m \times m \text { unitary }  same o.n. in V1, different o.n. in V2A=VB,Vm×m unitary 

  1. V1和V2都换基

 different o.n. in  V 1 & V 2 ↔ A = V B U \text { different o.n. in } V_{1} \& V_{2} \leftrightarrow A=V B U  different o.n. in V1&V2A=VBU

  1. V1和V2为同一个线性空间

 different o.n bases of  V 1 = V 2 : A = U ∗ B U , U n × n  unitary  ( A ≅ B : A , B  are unitarily equiv.)  \text { different o.n bases of } V_{1}=V_{2}: A=U^{*} B U, U \quad n \times n \text { unitary }(A \cong B: A, B \text { are unitarily equiv.) }  different o.n bases of V1=V2:A=UBU,Un×n unitary (AB:A,B are unitarily equiv.) 

此时即矩阵A和矩阵B有酉等价(unitarily equiv.)关系。

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值