矩阵论(五)——矩阵分析

1. 向量范数

向量范数: ∀ x ∈ V \forall x \in V xV,若非负实数 ∣ ∣ x ∣ ∣ ||x|| x满足
   (1) 正定性: ∣ ∣ x ∣ ∣ ≥ 0 , 且 ∣ ∣ x ∣ ∣ = 0    ⟺    x = 0 ||x|| \ge 0,且 ||x|| = 0 \iff x = 0 x0x=0x=0
   (2) 齐次性: ∣ ∣ a x ∣ ∣ = ∣ a ∣   ∣ ∣ x ∣ ∣ , a ∈ F ||ax|| = |a|\ ||x||,a \in F ax=a xaF
   (3) 三角不等式: ∀ x , y ∈ V , 都 有 ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ \forall x,y \in V,都有|| x + y|| \leq ||x|| + ||y|| xyVx+yx+y
则称||x||为向量x的范数 [ V ; ∣ ∣ . ∣ ∣ ] [V;||.||] [V.]赋范空间

1-范数: ∣ ∣ x ∣ ∣ 1 = Σ i ∣ x i ∣ ||x||_1 = \Sigma_i |x_i| x1=Σixi
2-范数(向量长度,由内积所诱导的范数): ∣ ∣ x ∣ ∣ 2 = ( x , x ) = x H x = Σ i ∣ x i ∣ 2 ||x||_2 = \sqrt{(x,x)} = \sqrt{x^H x} = \sqrt{\Sigma_i|x_i|^2} x2=(xx) =xHx =Σixi2
∞ \infty -范数: ∣ ∣ x ∣ ∣ ∞ = m a x ∣ x i ∣ ||x||_\infty = max|x_i| x=maxxi
p-范数: ∀ p ∈ ( 1 ,   + ∞ ) , ∣ ∣ x ∣ ∣ p = Σ i ∣ x i ∣ p p , ∀ x ∈ C n \forall p \in (1,\ +\infty),||x||_p = \sqrt[p]{\Sigma_i |x_i|^p},\forall x \in C^n p(1, +)xp=pΣixip xCn

例如:
x = ( 1 ,   i ,   1 + i ) T x = (1,\ i,\ 1 + i)^T x=(1, i, 1+i)T,有
∣ ∣ x ∣ ∣ 1 = 1 + ∣ i ∣ + ∣ 1 + i ∣ = 1 + 1 + 2 = 2 + 2 ||x||_1 = 1 + |i| + |1 + i| = 1 + 1 + \sqrt{2} = 2 + \sqrt{2} x1=1+i+1+i=1+1+2 =2+2
∣ ∣ x ∣ ∣ 2 = 1 2 + ∣ i ∣ 2 + ∣ 1 + i ∣ 2 = 1 + 1 + 2 2 = 2 ||x||_2 = \sqrt{1^2 + |i|^2 + |1 + i|^2} = \sqrt{1 + 1 + \sqrt{2}^2} = 2 x2=12+i2+1+i2 =1+1+2 2 =2
∣ ∣ x ∣ ∣ ∞ = m a x { 1 ,   1 ,   2 } = 2 ||x||_\infty = max\{1,\ 1,\ \sqrt{2}\} = \sqrt{2} x=max{1, 1, 2 }=2

在这里插入图片描述
向量范数的连续性: α 1 ,   ⋯   ,   α n 为 C n \alpha_1,\ \cdots,\ \alpha_n为C^n α1, , αnCn的任一组基, ∣ ∣ . ∣ ∣ 为 C n ||.||为C^n .Cn上任一向量范数, ∀ x ∈ C n , 有 x = Σ i   x i   α i , x i ∈ C n , 则 f ( x 1 ,   ⋯   ,   x n ) = ∣ ∣ x ∣ ∣ 为 x 1 ,   ⋯   ,   x n \forall x \in C^n,有x= \Sigma_i \ x_i \ \alpha_i,x_i \in C^n,则f(x_1,\ \cdots,\ x_n) = ||x||为x_1,\ \cdots,\ x_n xCnx=Σi xi αixiCnf(x1, , xn)=xx1, , xn的连续函数

向量范数的等价性: ∣ ∣ x ∣ ∣ ( 1 ) 与 ∣ ∣ x ∣ ∣ ( 2 ) ||x||^{(1)}与||x||^{(2)} x(1)x(2)是线性空间V上定义的两种向量范数,
∃ c 1 , c 2 > 0 , 使 c 1 ∣ ∣ x ∣ ∣ ( 2 ) ≤ ∣ ∣ x ∣ ∣ ( 1 ) ≤ c 2 ∣ ∣ x ∣ ∣ ( 2 ) , ∀ x ∈ V \exists c_1, c_2 > 0,使c_1 ||x||^{(2)} \leq ||x||^{(1)} \leq c_2 ||x||^{(2)},\forall x \in V c1,c2>0使c1x(2)x(1)c2x(2)xV,则称这两个范数等价
有限维线性空间的任意两种向量范数都是等价的
在无限维线性空间中,两个向量范数是可以不等价的

2. 矩阵范数

矩阵范数: ∀ A ∈ F n × n \forall A \in F^{n \times n} AFn×n,对应一个非负实数||A||满足
  (1) 正定性: ∣ ∣ A ∣ ∣ ≥ 0 , 且 ∣ ∣ A ∣ ∣ = 0    ⟺    A = 0 ||A|| \ge 0,且||A|| = 0 \iff A = 0 A0A=0A=0
  (2) 齐次性: ∣ ∣ a A ∣ ∣ = ∣ a ∣   ∣ ∣ A ∣ ∣ , a ∈ F ||aA|| = |a|\ ||A||,a \in F aA=a AaF
  (3) 三角不等式: ∀ A , B ∈ F n × n , 都 有 ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ \forall A,B \in F^{n \times n},都有||A + B|| \leq ||A|| + ||B|| ABFn×nA+BA+B
  (4) 相容性: ∀ A , B ∈ F n × n , 都 有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ B ∣ ∣ \forall A,B \in F^{n \times n},都有||AB|| \leq ||A|| \ ||B|| ABFn×nABA B
则称||A||为矩阵A的范数

F(Frobenius)-范数: ∣ ∣ A ∣ ∣ F = Σ i Σ j ∣ a i j ∣ 2 ) = t r ( A H A ) = Σ i σ i 2 ||A||_F = \sqrt{\Sigma_{i} \Sigma_{j} |a_{ij}|^2)} = \sqrt{tr(A^HA)} = \sqrt{\Sigma_i \sigma_i^2} AF=ΣiΣjaij2) =tr(AHA) =Σiσi2

例如:
在这里插入图片描述

A = ( a i j ) ∈ C n × n , ∣ ∣ A ∣ ∣ F = Σ i Σ j ∣ a i j ∣ 2 A = (a_{ij}) \in C^{n \times n},||A||_F = \sqrt{\Sigma_i \Sigma_j |a_{ij}|^2} A=(aij)Cn×nAF=ΣiΣjaij2 ,则
( 1 ) ∣ ∣ A ∣ ∣ F = ∣ ∣ A H ∣ ∣ F (1) \quad ||A||_F = ||A^H||_F (1)AF=AHF
( 2 ) ∣ ∣ U A ∣ ∣ F = ∣ ∣ A V ∣ ∣ F = ∣ ∣ U A V ∣ ∣ F = ∣ ∣ A ∣ ∣ F (2) \quad ||UA||_F = ||AV||_F = ||UAV||_F = ||A||_F (2)UAF=AVF=UAVF=AF,其中U,V是酉矩阵
( 3 ) t r ( A H A ) = Σ i Σ j ∣ a i j ∣ 2 (3) \quad tr(A^H A) = \Sigma_i \Sigma_j |a_{ij}|^2 (3)tr(AHA)=ΣiΣjaij2

例如:
A = ( 0 3 i 1 0 − 1 0 − 1 1 2 ) , A H A = ( 1 − 1 2 − 1 11 2 − 3 i − 2 2 + 3 i 5 ) A = \begin{pmatrix} 0 & 3i & 1 \\ 0 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix},A^HA = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 11 & 2-3i \\ -2 & 2 + 3i & 5 \end{pmatrix} A=0013i11102AHA=1121112+3i223i5
∣ ∣ A ∣ ∣ F = 9 + 1 + 1 + 1 + 1 + 4 = t r ( A H A ) = 1 + 11 + 5 = 17 ||A||_F = \sqrt{9 + 1 + 1 + 1 + 1 + 4} = \sqrt{tr(A^HA)} = \sqrt{1 + 11 + 5} = \sqrt{17} AF=9+1+1+1+1+4 =tr(AHA) =1+11+5 =17

相容范数: ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ . ∣ ∣ x ∣ ∣ ||Ax|| \leq ||A|| .||x|| AxA.x,其中||x||是向量范数,||A||是矩阵范数

诱导范数: ∣ ∣ A ∣ ∣ = m a x { ∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ } ||A|| = max\{\frac{||Ax||}{||x||}\} A=max{xAx},其中||x||是向量范数且 x ≠ 0 x \neq 0 x=0,称||A||为由向量范数||x||所诱导的诱导范数

矩阵p-范数: ∣ ∣ x ∣ ∣ p ||x||_p xp所诱导的矩阵范数。常用的p-范数为 ∣ ∣ A ∣ ∣ 1 , ∣ ∣ A ∣ ∣ 2 与 ∣ ∣ A ∣ ∣ ∞ ||A||_1,||A||_2与||A||_\infty A1A2A

列和范数: ∣ ∣ A ∣ ∣ 1 = m a x ( Σ i = 1 n ∣ a i j ∣ ) ||A||_1 = max(\Sigma_{i = 1}^n |a_{ij}|) A1=max(Σi=1naij)np.max(np.sum(abs(arr), axis=1, keepdims=True), axis=0)

行和范数: ∣ ∣ A ∣ ∣ ∞ = m a x ( Σ j = 1 n ∣ a i j ∣ ) ||A||_\infty = max(\Sigma_{j = 1}^n |a_{ij}|) A=max(Σj=1naij)np.max(np.sum(abs(arr), axis=0, keepdims=True), axis=1)

谱范数: ∣ ∣ A ∣ ∣ 2 = λ 1 , λ 1 是 A H A ||A||_2 = \sqrt{\lambda_1},\lambda_1是A^HA A2=λ1 λ1AHA的最大特征值

例如:
在这里插入图片描述

3. 向量序列与矩阵序列的极限

3.1 向量序列的极限

x ( k ) = ( x 1 ( k ) ⋯ x n ( k ) ) T , k = 1 , 2 , ⋯ 是 C n x^{(k)} = (x_1^{(k)} \quad \cdots \quad x_n^{(k)})^T,k = 1,2,\cdots是C^n x(k)=(x1(k)xn(k))Tk=12Cn空间的一个向量序列,如果当 k → + ∞ k \rightarrow +\infty k+时,它的n个分量数列都收敛,即 lim ⁡ k → ∞ x i ( k ) = a i , i = 1 , 2 , ⋯ , n \lim_{k \to \infty} x_i^{(k)} = a_i,i = 1,2,\cdots,n limkxi(k)=aii=12n,则称向量序列 { x ( k ) } \{x^{(k)}\} {x(k)}是按分量收敛的。向量 α = ( α 1 ⋯ α n ) T \alpha = (\alpha_1 \quad \cdots \quad \alpha_n)^T α=(α1αn)T是它的极限,记为 l i m k → ∞ x ( k ) = α 或 x ( k ) → α lim_{k \rightarrow \infty} x^{(k)} = \alpha或 x^{(k)} \rightarrow \alpha limkx(k)=αx(k)α
当至少有一个分量数列是发散的,则称向量序列是发散的。
例如
在这里插入图片描述
x ( k ) ∈ C n , α ∈ C n , 则 lim ⁡ k → ∞ x ( k ) = α    ⟺    lim ⁡ k → ∞ ∣ ∣ x ( k ) − α ∣ ∣ = 0 x^{(k)} \in C^n,\alpha \in C^n,则\lim_{k \rightarrow \infty}x^{(k)} = \alpha \iff \lim_{k \rightarrow \infty} ||x^{(k)} - \alpha|| = 0 x(k)CnαCnlimkx(k)=αlimkx(k)α=0,其中 ∣ ∣ . ∣ ∣ 为 C n ||.||为C^n .Cn中任一范数

3.2 矩阵序列的极限

矩阵序列 { A ( k ) } , A ( k ) = ( a i j ( k ) ) ∈ C n × n , 若 lim ⁡ k → ∞ a i j ( k ) = a i j , i , j = 1 , ⋯ , n \{A^{(k)}\},A^{(k)} = (a_{ij}^{(k)}) \in C^{n \times n},若\lim_{k \rightarrow \infty} a_{ij}^{(k)} = a_{ij},i,j = 1,\cdots,n {A(k)}A(k)=(aij(k))Cn×nlimkaij(k)=aijij=1n
则称矩阵序列 { A ( k ) } \{A^{(k)}\} {A(k)}收敛, A = ( a i j ( k ) ) 称 为 { A ( k ) } A = (a_{ij}^{(k)})称为\{A^{(k)}\} A=(aij(k)){A(k)}的极限,记为 lim ⁡ k → ∞ A ( k ) = A 或 A ( k ) = A , k → ∞ \lim_{k \rightarrow \infty}A^{(k)} = A或A^{(k)} = A,k \rightarrow \infty limkA(k)=AA(k)=Ak
例如:
A ( k ) = ( ( ( 1 + 1 k ) k 1 + 1 k − 1 ( − 1 ) k k ) ⟶ A = ( e 1 − 1 0 ) A^{(k)} = \begin{pmatrix} ((1 + \frac{1}{k}) ^ k & 1 + \frac{1}{k} \\ \\ -1 & \frac{(-1)^k}{k} \end{pmatrix} \longrightarrow A = \begin{pmatrix} e & 1 \\ \\ -1 & 0 \end{pmatrix} A(k)=((1+k1)k11+k1k(1)kA=e110

{ A ( k ) } ∈ C n × n , ∣ ∣ A ∣ ∣ ∈ C n × n , 则 l i m k → ∞ A ( k ) = ∣ ∣ A ∣ ∣    ⟺    l i m k → ∞ ∣ ∣ A ( k ) − A ∣ ∣ = 0 \{A^{(k)}\} \in C^{n \times n},||A|| \in C^{n \times n},则lim_{k \rightarrow \infty} A^{(k)} = ||A|| \iff lim_{k \rightarrow \infty} ||A^{(k)} - A|| = 0 {A(k)}Cn×nACn×nlimkA(k)=AlimkA(k)A=0,其中 ∣ ∣ . ∣ ∣ 为 C n ||.||为C^n .Cn中任一范数

4. 矩阵幂级数

谱半径: ρ ( A ) = m a x ( ∣ λ i ∣ ) , λ i ∈ { λ 1 ,   λ 2 ,   ⋯   ,   λ n } , { λ 1 ,   λ 2 ,   ⋯   ,   λ n } 矩 阵 A ∈ C n × n \rho(A) = max(|\lambda_i|),\lambda_i \in \{\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_n\},\{\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_n\}矩阵A \in C^{n \times n} ρ(A)=max(λi)λi{λ1, λ2, , λn}{λ1, λ2, , λn}ACn×n的全部特征值

ρ ( A k ) = ( ρ ( A ) ) k \rho(A^k) = (\rho(A))^k ρ(Ak)=(ρ(A))k
A k → 0 ( k → ∞ )    ⟺    ρ ( A ) < 1 A^k \rightarrow 0(k \rightarrow \infty) \iff \rho(A) < 1 Ak0(k)ρ(A)<1

A ∈ C n × n , ∀ 矩 阵 范 数 ∣ ∣ A ∣ ∣ ∈ C n × n , 都 有 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ A \in C^{n \times n},\forall 矩阵范数||A|| \in C^{n \times n},都有\rho(A) \leq ||A|| ACn×nACn×nρ(A)A。即A的谱半径是A的任意一种矩阵范数的下界

A ∈ C n × n , ∀ ϵ > 0 A \in C^{n \times n},\forall \epsilon > 0 ACn×nϵ>0,存在某种矩阵范数 ∣ ∣ A ∣ ∣ ∗ , 使 ∣ ∣ A ∣ ∣ ∗ ≤ ρ ( A ) + ϵ ||A||_*,使||A||_* \leq \rho(A) + \epsilon A使Aρ(A)+ϵ。即A的谱半径是A的所有矩阵范数的下确界
证明:
在这里插入图片描述
矩阵幂级数: Σ k = 0 ∞ a k A k = a 0 I + a 1 A + ⋯ + a k A k + ⋯ , 其 中 A ∈ C n × n , a k ∈ C \Sigma_{k = 0}^{\infty} a_k A^k = a_0 I + a_1 A + \cdots + a_k A^k + \cdots,其中A \in C^{n \times n},a_k \in C Σk=0akAk=a0I+a1A++akAk+ACn×nakC

矩阵幂级数的部分和: S n ( A ) = Σ k = 0 n a k A k S_n(A) = \Sigma^n_{k = 0} a_k A^k Sn(A)=Σk=0nakAk

{ S n ( A ) } \{S_n(A)\} {Sn(A)}收敛,则称 Σ k = 0 ∞ a k A k \Sigma^\infty_{k = 0}a_kA^k Σk=0akAk收敛,否则发散

lim ⁡ n → ∞ S n ( A ) = S \lim_{n \rightarrow \infty} S_n(A) = S limnSn(A)=S,则称S为 Σ k = 0 ∞ a k A k \Sigma_{k = 0}^\infty a_kA^k Σk=0akAk的和矩阵

收敛性判别: 若复变量z的幂级数 Σ k = 0 ∞ a k z k \Sigma_{k = 0}^{\infty}a_k z^k Σk=0akzk的收敛半径为R, R = lim ⁡ n → ∞ a n a n + 1 R = \lim_{n \to \infty} \frac{a_n}{a_{n + 1}} R=limnan+1an,而方阵 A ∈ C n × n A \in C^{n \times n} ACn×n的谱半径为 ρ ( A ) \rho(A) ρ(A),则
  (1) ρ ( A ) < R , 则 Σ k = 0 ∞ a k A k \rho(A) < R,则\Sigma_{k = 0}^\infty a_k A^k ρ(A)<RΣk=0akAk收敛
  (2) ρ ( A ) > R , 则 Σ k = 0 ∞ a k A k \rho(A) > R,则\Sigma_{k = 0}^\infty a_k A^k ρ(A)>RΣk=0akAk发散
  (3) ρ ( A ) = R , 则 Σ k = 0 ∞ a k A k \rho(A) = R,则\Sigma_{k = 0}^\infty a_k A^k ρ(A)=RΣk=0akAk收敛性不定

例如:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值