Point Cloud Upsampling Network

核心思想是学习每个点的多层次特征,然后利用不同的卷积分支在特征空间的中进行扩充。然后将扩充后的特征进行分解并重建为上采样点云集。我们的网络应用于块状点云上,并且使用了联合的损失函数使得上采样后的点在潜在的曲面上分布一致。
我们制定了两个度量标准,分布均匀性和距下层表面的距离偏差。
我们网络中输入和输出点的数量并不相同。
给定一组点,通过学习训练数据集的几何形状生成一组更密集的点来描述基础几何。输入点之间的简单插值不能产生令人满意的结果。
二 网络架构
给定3D点云,我们的网络在度量标准下输出更密集的点云。我们的网络架构(见图1)由四个部分组成:补丁提取,点特征嵌入,特征扩展和坐标重建。
首先,我们从给定的一组3D模型中提取不同尺度和分布的点片(第2.1节)。然后,点要素嵌入组件通过分层特征学习和多级特征聚合将原始3D坐标映射到特征空间(第2.2节)。之后,(第2.3节)扩展特征数量,并通过坐标重建组件(第2.4节)中的一系列完全连接的层重建输出点云的3D坐标。
2.1 补丁提取
网络从对象中学习局部几何模式来完成点云上采样,这促使我们采用基于补丁的方法来训练网络并学习几何语义。先收集一组3D对象作为训练。具体说,我们在这些对象的表面上随机选择M个点。从每个选定的点开始,在测地距离d阈值内,生成一个曲面片。然后,在每个面片上,使用泊松盘采样随机生成N个点,作为面片上的真实点分布。在上采样中,局部和全局特征都有助于实现平滑和均匀输出。因此,我们设置了不同尺寸的d,这样我们就可以在先前的物体上提取不同比例和密度的点。
2.2 点特征嵌入
为了从补丁(面片)中学习局部和全局几何信息,我们考虑两个特征学习策略,它们的优点互补:
分层特征学习逐步捕获层次结构中不断增长的尺度特征已被证明是提取局部和全局特征的有效策略。因此,我们采用PointNet ++ 中提出的分层特征学习机制。
多级特征聚合
以前的一些工作采用跳跃连接进行多级特征聚合。然而,我们通过实验发现,这种自上而下的传播对于聚合我们的上采样问题中的特征并不是非常有效。因此

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值