IOU Tracker

github: https://github.com/bochinski/iou-tracker
在这里插入图片描述

1. 简介

这两天看了一下本篇关于多目标跟踪的论文,提出了一种简单高效的跟踪模型——IOU Tracker。就像标题所说,它速度快、基于TBD(tracking-by-detection)、不需要图像信息。

就我认为,这篇论文是适应当前(当时)的研究环境提出来的,起一个引领方向的作用。它基于两个重要假设

  • 检测器足够优秀(high precision detections)
  • 视频帧率足够高(high frame rates)
2. 算法详述

为什么要做这种假设呢?带着这个疑问,我们先来看一下IOU Tracker的算法:
在这里插入图片描述
算法本质十分简单,简单介绍一下:

  • 检测前:用σl滤除得分过低的detections
  • 对每一个激活状态的轨迹,在当前帧找到对应的最大IOU的detection,并用σIOU限制其是否可以加入该轨迹
  • 当前帧的未匹配detections,作为新的轨迹,变为激活状态
  • 另外,一个轨迹还需要满足:(1)轨迹中至少一个detection得分高于σh;(2)轨迹时间不少于tmin

所以,其实本算法仅仅利用了检测结果和四个阈值而已:

  • σl:检测前过滤
  • σIOU:核心跟踪指标
  • σh、tmin:检测后过滤
    在这里插入图片描述

这里再额外说一下检测后过滤的两个阈值的作用:

  • tmin:过短的轨迹一般是FP问题(当然也有可能过滤掉真实的短轨迹,如果我们真的想留住它,那就修改算法吧~)
  • σh:保证轨迹跟踪的目标确实有用!(a true object of interest)又需要低分检测框来保证轨迹的完整性

这就是基本的算法内容了,那我们回到开始提到的两个基本假设,是不是也好理解了呢?

  • IOU Tracker过度依赖于检测框的性能,而如今检测的性能也足够好,所以才造就了此类简单的跟踪算法
  • 由于本算法是基于帧间IOU进行连接的,所以我们当然不希望目标在帧间变化过快,因为这会影响IOU的可靠性;高帧率可以在一定程度上保证帧间目标的变化足够小
3. 性能与评价

前面提到过,我认为这篇文章就是一个引领方向的作用,他给了我们一个适应当前环境的跟踪优化基准,并希望我们在此基础上做进一步工作。我十分希望在这里贴一下作者自己的评价:
在这里插入图片描述
若要总结一下本跟踪器的特点,也是十分简单的:
优点

  1. 简单(原理、实现简单,不需视觉信息)
  2. 快速(计算代价足够低,甚至不足以和检测器相比拟;且由于其速度快,后续方便在此基础上做扩展)

缺点

  1. 依赖检测器性能
  2. 依赖帧间变化程度:这个方面还是挺宽的,比如尺寸变化、长宽比变化、遮挡问题等;另外可以想象到,拍摄设备的稳定程度也严重影响tracker性能(如果你的相机是移动的,那很容易造成帧间大幅变化)

另外值得一提的是,从算法原理上可以看出,本算法容易被漏检FN影响性能;而相应的,它对虚检FP具有包容性。这是容易理解的,漏检的bbox是无法被IOU tracker利用的,而虚检的bbox可以用阈值进行过滤。

原文中还有更多的技术细节,以及完整的实验方法,这里就不详述了,感兴趣的读者请参见原文~
在这里插入图片描述

YOLOv5n的算法特点 YOLOv5n是基于YOLOv5架构的Nano版本,主要针对边缘计算场景设计,通过以下技术实现轻量化和高效性: 网络结构优化 主干网络(Backbone):采用精简的CSPDarknet结构,减少卷积层数量和通道数,降低计算量515。 Focus结构(早期版本):通过像素切片操作将输入图像通道数扩展4倍,提升特征提取效率,但最新版本可能移除该结构以进一步简化模型615。 NeckHead:使用PANet(Path Aggregation Network)进行多尺度特征融合,结合小尺寸预测头(如20×20网格),优化小目标检测能力15。 模型压缩技术 量化(Quantization):将模型权重从FP32转换为INT8,体积减少约70%,同时保持较高精度515。 剪枝(Pruning):移除冗余神经元或通道,进一步压缩模型体积(典型模型大小<2MB)15。 高效推理机制 单阶段检测:将目标定位和分类统一为回归问题,单次前向传播完成检测,推理速度可达30 FPS(320×240分辨率)515。 多正样本匹配:每个真实框由多个预测框匹配,提升训练效率和检测鲁棒性615。 2. 在人数统计系统中的具体应用 (1)检测跟踪流程 行人检测 YOLOv5n对摄像头输入的每帧图像进行推理,输出行人边界框(Bounding Box)及置信度。 通过非极大值抑制(NMS)过滤重叠检测框,保留高置信度结果615。 动态计数 跟踪算法:结合IOU Tracker或DeepSORT精简版,通过交并比(IOU)或特征匹配关联前后帧目标,避免重复计数1316。 区域统计逻辑:设置虚拟检测线(如入口/出口),根据目标移动方向统计进出人数1316。 (2)嵌入式部署优化 硬件适配 边缘处理器:如ESP32-S3(内置NPU)或STM32H7系列MCU,支持INT8量化模型加速推理515。 低功耗设计:动态调整帧率(如无人时降至5 FPS),结合PIR传感器唤醒摄像头,平均功耗可控制在300mW以下15。 模型训练调优 数据集:使用COCO或自定义数据集,标注行人边界框,并通过Mosaic数据增强提升遮挡场景的泛化能力615。 损失函数:优化定位损失(CIoU Loss)和分类损失,平衡检测精度速度15。 将以上内容形成思维导图
最新发布
04-03
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值