IOU Tracker

github: https://github.com/bochinski/iou-tracker
在这里插入图片描述

1. 简介

这两天看了一下本篇关于多目标跟踪的论文,提出了一种简单高效的跟踪模型——IOU Tracker。就像标题所说,它速度快、基于TBD(tracking-by-detection)、不需要图像信息。

就我认为,这篇论文是适应当前(当时)的研究环境提出来的,起一个引领方向的作用。它基于两个重要假设

  • 检测器足够优秀(high precision detections)
  • 视频帧率足够高(high frame rates)
2. 算法详述

为什么要做这种假设呢?带着这个疑问,我们先来看一下IOU Tracker的算法:
在这里插入图片描述
算法本质十分简单,简单介绍一下:

  • 检测前:用σl滤除得分过低的detections
  • 对每一个激活状态的轨迹,在当前帧找到对应的最大IOU的detection,并用σIOU限制其是否可以加入该轨迹
  • 当前帧的未匹配detections,作为新的轨迹,变为激活状态
  • 另外,一个轨迹还需要满足:(1)轨迹中至少一个detection得分高于σh;(2)轨迹时间不少于tmin

所以,其实本算法仅仅利用了检测结果和四个阈值而已:

  • σl:检测前过滤
  • σIOU:核心跟踪指标
  • σh、tmin:检测后过滤
    在这里插入图片描述

这里再额外说一下检测后过滤的两个阈值的作用:

  • tmin:过短的轨迹一般是FP问题(当然也有可能过滤掉真实的短轨迹,如果我们真的想留住它,那就修改算法吧~)
  • σh:保证轨迹跟踪的目标确实有用!(a true object of interest)又需要低分检测框来保证轨迹的完整性

这就是基本的算法内容了,那我们回到开始提到的两个基本假设,是不是也好理解了呢?

  • IOU Tracker过度依赖于检测框的性能,而如今检测的性能也足够好,所以才造就了此类简单的跟踪算法
  • 由于本算法是基于帧间IOU进行连接的,所以我们当然不希望目标在帧间变化过快,因为这会影响IOU的可靠性;高帧率可以在一定程度上保证帧间目标的变化足够小
3. 性能与评价

前面提到过,我认为这篇文章就是一个引领方向的作用,他给了我们一个适应当前环境的跟踪优化基准,并希望我们在此基础上做进一步工作。我十分希望在这里贴一下作者自己的评价:
在这里插入图片描述
若要总结一下本跟踪器的特点,也是十分简单的:
优点

  1. 简单(原理、实现简单,不需视觉信息)
  2. 快速(计算代价足够低,甚至不足以和检测器相比拟;且由于其速度快,后续方便在此基础上做扩展)

缺点

  1. 依赖检测器性能
  2. 依赖帧间变化程度:这个方面还是挺宽的,比如尺寸变化、长宽比变化、遮挡问题等;另外可以想象到,拍摄设备的稳定程度也严重影响tracker性能(如果你的相机是移动的,那很容易造成帧间大幅变化)

另外值得一提的是,从算法原理上可以看出,本算法容易被漏检FN影响性能;而相应的,它对虚检FP具有包容性。这是容易理解的,漏检的bbox是无法被IOU tracker利用的,而虚检的bbox可以用阈值进行过滤。

原文中还有更多的技术细节,以及完整的实验方法,这里就不详述了,感兴趣的读者请参见原文~
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值