IOU 目标跟踪其一:IOU Tracker

IOUTracker是一种在2017年提出的简单高效的跟踪模型,尤其适用于高帧率场景。它假设检测器在每帧中都能检测到目标,并且连续帧间的检测有高IOU重叠。算法通过设定阈值σIOU,将最高IOU的检测与前一帧的跟踪相关联,未匹配的检测则开始新的跟踪。通过删除短跟踪和低评分检测,提高了跟踪的准确性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IOU MOT 其一:IOU Tracker


Reference:

  1. High-Speed Tracking-by-Detection Without Using Image Information

1. 介绍

IOU Tracker 是 2017 年提出的一种不需要图像信息的简单高效的跟踪模型,它在 DETRAC 车辆跟踪数据集可以轻松运行到 100K fps。

它主要基于两个假设:

  1. 检测器对每帧要跟踪的每个物体都产生一个检测,也就是说,在检测中 没有/只有很少 的间断;
  2. 在连续帧中检测一个物体有高度重叠的 I O U IOU IOU,这在足够高的帧率是常见情况。

文内使用的 I O U IOU IOU 测量方式:
IOU ⁡ ( a , b ) = Area ⁡ ( a ) ⋂ Area ⁡ ( b )  Area  ( a ) ⋃ Area ⁡ ( b ) . \operatorname{IOU}(a, b)=\frac{\operatorname{Area}(a) \bigcap \operatorname{Area}(b)}{\text { Area }(a) \bigcup \operatorname{Area}(b)} . IOU(a,b)= Area (a)Area(b)Area(a)Area(b).

如果这两个条件都满足,跟踪将变得没那么重要,即使不使用图像信息也能够完成。

2. 算法内容

文中提出的 I O U IOU IOU 跟踪器,如果满足一定的阈值 σ I O U σ_{IOU} σIOU,它通过将最高的 I O U IOU IOU 与前一帧的最后一个检测相关联来继续跟踪。所有没有分配到现有跟踪的探测将开始一个新的跟踪。所有没有被分配的检测的跟踪将被干掉。
在这里插入图片描述通过滤除所有长度小于 t m i n t_{min} tmin 的跟踪和一次都没评分在 σ h σ_h σh 以上的检测,进一步提高了性能。较短的跟踪被删除,因为它们通常来源于假阳性,普遍会增加输出的混乱。要求跟踪至少有一个高分检测,以确保跟踪是一个真正感兴趣的对象。

详细的方法描述如下图所示,其中 D f D_f Df 表示在第 f f f 帧的检测, d j d_j dj 表示在那一帧的第 j j j 个检测结果, T a T_a Ta 活跃的(active)跟踪, T j T_j Tj 完成的跟踪, F F F 序列中帧的个数:
在这里插入图片描述
流程:

  1. 对于当前帧,首先利用阈值 σ l \sigma_l σl 进行初筛,得到输入检测集 D D D;
  2. 对于每个活跃的跟踪,找到和它有最大 I O U IOU IOU 的该帧检测框,如果该 I O U IOU IOU 大于 σ I O U \sigma_{IOU} σIOU,将检测 d b e s t d_{best} dbest 加入到当前活跃跟踪 t i t_i ti 中,随后将该检测框从当前帧检测集 D f D_f Df 内删去;而如果最大的 I O U IOU IOU 小于 σ I O U \sigma_{IOU} σIOU,这时如果该活跃跟踪的历史最高检测评分大于 σ h \sigma_h σh 且跟踪的时间长度大于 t m i n t_{min} tmin,则将 t i t_{i} ti 加入到 T f T_f Tf 中,否则将从 T a T_a Ta 中删去 T a T_a Ta
  3. 对于没有匹配到的检测,将其初始化为新跟踪并添加到 T a T_a Ta 中;
  4. 在上述循环完毕后,对激活跟踪 T A T_A TA 中的每个跟踪做判断,如果满足跟踪的历史最高检测评分大于 σ h \sigma_h σh 且跟踪的时间长度大于 t m i n t_{min} tmin,则将该跟踪 t i t_i ti 加入到 T f T_f Tf 中。

文章跳转:
IOU 目标跟踪其二:VIOU Tracker

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

泠山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值