目标跟踪算法IOU Tracker与SORT算法

摘要:

        网上已经由很多对跟踪算法的讲解和介绍,我主要针对以下几点修改了代码,方便自己项目使用      

IOU Tracker

        做了IOU Tracker算法的实现,原文以及github很多都是离线实现,即跑完整个视频得到结果,我想要一个在线版本的,于是重新写了在线版本的IOU Tracker代码,并封装成类。可实时运行检测的同时进行跟踪。

        并同时对tracker加了一定的生命长度,即检测框消失时不会立即删除tracker,在连续N帧都未匹配上才会删除,重新匹配上则编号不变。

github: 

WindyXiang/MOT_Trackers: Detection based multi-target tracking algorithm (IOU_Tracker, SORT) (github.com)

SORT        

        原始sort只要生成tracker就会分配编号,现在修改为只有连续检测并跟踪到N帧图像才会被判定为有效tracker,这时候才会分配跟踪id

 github: 

WindyXiang/MOT_Trackers: Detection based multi-target tracking algorithm (IOU_Tracker, SORT) (github.com)

### SORT Multi-Object Tracking Algorithm Implementation and Applications #### Overview of SORT Simple Online and Realtime Tracking (SORT) is an efficient multi-object tracking algorithm designed specifically for real-time applications. The core idea behind SORT lies in combining object detection with a simple yet effective data association mechanism using Intersection over Union (IoU). This approach leverages the power of Convolutional Neural Network (CNN)-based detectors within the context of multiple object tracking[^2]. #### Key Components of SORT The primary components that make up the SORT framework include: - **Detection**: Utilizes pre-trained CNN models to detect objects from video frames. - **Data Association**: Employs IoU matching between detected bounding boxes across consecutive frames to maintain consistent tracklets. - **Kalman Filter**: Predicts future positions of tracked objects by estimating motion dynamics through time series analysis. By integrating these elements, SORT achieves robust performance while maintaining computational efficiency suitable for online processing tasks such as autonomous driving systems or surveillance monitoring platforms. ```python import numpy as np from kalman_filter import KalmanBoxTracker from hungarian_algorithm import associate_detections_to_trackers def sort_tracker(detections): """ Apply Simple Online and Real-Time Tracker on given detections Args: detections (list): List containing [x1,y1,x2,y2,score] format bounding box coordinates Returns: list: Updated set of active tracks after applying SORT logic """ # Initialize variables if not already done so max_age = 1 # Maximum number of missed updates before removing tracker min_hits = 3 # Minimum hits required for initiating new trackers iou_threshold = 0.3 # Threshold value used during IOU calculation # Create/update existing trackers based on current frame's detections matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers( detections, trackers) # Handle matches & mismatches accordingly... return updated_tracks ``` This code snippet demonstrates how one might implement key aspects of SORT including initialization parameters like `max_age`, `min_hits` alongside setting appropriate thresholds (`iou_threshold`) which play crucial roles when determining whether newly found instances should initiate fresh trackers versus being associated back into ongoing ones. #### Application Scenarios In terms of practical usage scenarios, SORT has been extensively applied towards various domains involving moving entities recognition problems where continuous identification matters most. For instance, evaluating sports players' movements can benefit greatly from employing SORT due to its ability to handle occlusions gracefully without requiring complex feature extraction processes typically seen elsewhere[^1]. Additionally, traffic management solutions also find utility here especially concerning pedestrian safety measures around vehicles equipped with advanced driver assistance systems (ADAS).
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值