Cascade R-CNN(CVPR2018)

作者:蔡兆伟(文章最后致谢了何凯明的参与)
在这里插入图片描述
论文:https://arxiv.org/abs/1712.00726
github:https://github.com/zhaoweicai/cascade-rcnn

推荐解析:
- 简介1:https://zhuanlan.zhihu.com/p/42553957
- 简介2:https://blog.csdn.net/u014380165/article/details/80602027
- 详细:https://zhuanlan.zhihu.com/p/45036212

Cascade R-CNN是针对R-CNN系列的two-stage结构,针对“IOU阈值设计”带来的问题而设计的解决方案。在类R-CNN框架中,IOU阈值通常设为0.5,不过这种较低的阈值会为检测带来大量噪声。而若直接提高该阈值,则会造成“(traing time)正样本减少导致过拟合”、“(inference time)预测框和检测器的质量不匹配(mismatch)”等问题(Figure 1)。

(ps)这里所说的“质量”:预测框的质量指其和groundtruth的IOU、检测器的质量指其IOU阈值。
在这里插入图片描述
尤其是,作者通过实验发现:低IOU阈值只适用于低质量的proposals而对准确度高的检测框不友好;预测框和检测器质量匹配时才能产生更好的检测结果。另外,检测器的回归操作一般会提高预测框与groundtruth的IOU(Figure 1©)。

所以,作者的思路是,设计一个检测器级联结构,下一个检测器使用上一个的bbox结果,并且调高IOU阈值。这样的理由是,预测框每经过一级检测器,其与groundtruth的IOU都会有所提升,将这种高质量检测框作为输入,并使用更高的IOU阈值,可以实现“预测框与检测器质量的匹配”。

因此,Cascade结构的设计,既通过提高IOU阈值提升了模型“辨别close FP”的能力,又避免了overfitting和mismatch的问题,获得了不俗的效果(对比Mask R-CNN也优势明显)。
在这里插入图片描述
总结来说,虽然关于IOU阈值设计策略早已有人做过研究,但是本文作者通过实验找到了一个绝妙的切入点,并有较好的可解释性。并且,Cascade R-CNN可以应用到任何基于R-CNN框架的two-stage检测器上。如今CV+DL领域还很年轻,即使是检测领域,也许还有很多很多切入点,本文作者这种“基于现象与实验发现问题+基于合理假设解决问题+基于实验验证假设”的思路,值得我们初学者借鉴。

发布了58 篇原创文章 · 获赞 4 · 访问量 3463
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览