halcon学习_超人启蒙班10-20课

本文讲解了机器视觉中的颜色识别技术,包括HSV颜色模型的理解与应用,通过实例演示了如何在不同颜色空间中进行目标检测。此外,还介绍了MLP(多层感知机)在特征训练中的应用,以及HALCON自定义算子封装的方法。
摘要由CSDN通过智能技术生成

第十四课 颜色识别1
1、 HSV:H色度、S饱和度、V亮度
2、 学习机器视觉要掌握这些内容。
在这里插入图片描述
3、 HSV弱点:受光照影响非常大!
4、 不同的H值对于不同的颜色。
在这里插入图片描述
5、 demo - 应用范围 - 颜色检测 - color_simple:
核心函数:
decompose3 (Image, Red, Green, Blue)
trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, ‘hsv’)
reduce_domain (Hue, HighSaturation, HueHighSaturation)
思路:
①:RGB→HSV
②:在S分量中划区域
③:在H分量中截出该区域,继续操作。因为H分量是色度,相当于灰度图。
步骤:
分解成RGB → 转HSV → 在S分量中选区域 → 在H分量中用阈值再次选择区域 → 断开连通域 → 利用特征直方图选区域 → 闭运算 → 在图像中扣除H分量中找的内容(reduce_domain())
ps:用特征直方图选的时候都要断开连通域

* color_simple.hdev: segment yellow cable in HSV color space
dev_close_window ()
dev_open_window (0, 0, 640, 480, 'black', WindowHandle)
for i := 1 to 2 by 1
    read_image (Image, 'cable' + i)
    decompose3 (Image, Red, Green, Blue)
    trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
    threshold (Saturation, HighSaturation, 100, 255)
    reduce_domain (Hue, HighSaturation, HueHighSaturation)
    threshold (HueHighSaturation, Yellow, 20, 50)
    connection (Yellow, ConnectedRegions)
    select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 0)
    closing_circle (SelectedRegions, Yellow, 3.5)
    reduce_domain (Image, Yellow, ImageReduced)
    dev_display (HueHighSaturation)
    dev_display (ImageReduced)
    stop ()
endfor

在这里插入图片描述
6、 demo - 应用范围 - 颜色检测 - color_fuses

第十四课 颜色识别2
对于图片内容不多、颜色差别大的大色块的图片可以直接在H分量中选择区域!(H分量和S分量差别也不大)
在这里插入图片描述
但是对于H分量和S分量差别大的,还是先在S中选,在到H中。
S分量中轮廓清楚些。
看个例子。
S分量
H分量
在这里插入图片描述

第十六课 MLP训练
1、 MLP(MultiLayer Perception)多层感知机,也叫人工神经网络ANN(Annual Neural Network)。
2、 MLP训练的例程只要看 demo-应用-颜色检测-color_pieces
3、 特征训练、特征学习。一个物品有多种特征,不只是识别颜色,所以灰度图一样可以训练。还有其他纹理、概率等特征。
4、 在使用draw_region()函数前,一定要加dev_set_color()函数。
5、 *表注释。
6、 三部曲:创建分类器,添加样本,训练。
7、 糖豆程序中:

create_class_mlp(3, 7, 5, 'softmax', 'normalization', 3, 42, MLPHandle)	//3代表3个特征变量的数量,7代表隐层节点数量,5代表输出的5个分类
add_samples_image_class_mlp(Image, Classes, MLPHandle)  //将
disp_message(WindowHandle, '开始训练模型', 'window', 12, 12, 'black', 'true')
train_class_mlp(MLPHandle, 400,0.5, 0.01, Error, ErrorLog)  //训练

classify_image_class_mlp(Image, ClassRegions, MLPHandle, 0.5)  //利用训练完的模型来运行

第十九课 HALCON自定义算子封装
1、封装本地函数和库函数的时候,一定先要全部选中!
本地函数:关闭后重新打开就没有了
2、封装本地函数:
先把写好的函数全部选中 - 函数 - 创建函数
一般设置 - 名称 - 类型:本地函数类型
参数 - 输入参数 + 控制参数
参数文档 - image + regions + lujing(看图)
多通道可选 正确:返回值总是一个多通道的图像
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里可以查看刚刚封装好的函数
3、 封装库函数:
步骤基本同上,在一般设置里的类型中选择库函数,并选好路径。我就保存在桌面上试一下。
封装好后,打开 函数 - 管理函数 - 添加路径或文件
添加后就能查看了
在这里插入图片描述
4、 点击该图标(单步跳入函数),可以进入封装函数内查看
在这里插入图片描述

### 回答1: "license_eval_halcon_steady_2023_02 2023-2-2 113433 3.dat" 是一个名为 "license_eval_halcon_steady_2023_02" 的许可证文件,其有效期至2023年2月2日,制作时间为11时34分33秒,版本号为3。 许可证文件通常用于控制软件的合法使用和使用期限。根据文件名和有效期,可以推断此许可证文件是用于评估哈尔康(Halcon)稳定版软件的使用权。哈尔康是一种流行的机器视觉开发库,用于图像处理和模式识别。 该许可证的有效期至2023年2月2日,这意味着使用者可以在这个日期之前合法地使用哈尔康稳定版软件。此外,制作时间为11时34分33秒,版本号为3,这些信息可能是用于跟踪许可证的创建和更新过程。 许可证文件在软件的安装过程中起着重要的作用,它确保软件的合法使用和控制用户的权限。在评估许可证中,通常允许用户在一定时间内免费使用软件的功能,并评估其是否符合用户的需求。 希望这个回答对于你对于"license_eval_halcon_steady_2023_02 2023-2-2 113433 3.dat"的问题有所帮助。如有任何其他问题,请随时提问。 ### 回答2: 根据提供的信息,"license_eval_halcon_steady_2023_02 2023-2-2 113433 3.dat" 是一个文件名。根据文件名的构成可以推测该文件可能与Halcon软件有关,命名中包含了2023年2月2日和一些数字。这可能是一个用于评估Halcon软件的许可文件。根据文件名中的日期推测,该许可文件可能在2023年2月2日生成或失效。文件名中的数字可能是某种与许可相关的标识。 需要注意的是,根据提供的信息无法得知文件的具体内容和用途,因为它只是文件名而已。要了解文件的具体内容和用途,需要进一步查看文件的内部内容或根据文件名进行更深入的分析。 总之,"license_eval_halcon_steady_2023_02 2023-2-2 113433 3.dat" 是一个文件名,可能与Halcon软件的许可有关,但需要进一步了解文件的内容和用途。 ### 回答3: license_eval_halcon_steady_2023_02 2023-2-2 113433 3.dat 是一份许可证文件。根据文件名来看,可以推断这是用于评估Halcon稳定版本的许可证文件。许可证有效期至2023年2月2日,许可证编号为113433。文件名中的数字3可能代表了许可证的版本号。 根据这份许可证文件的命名格式,我们可以猜测这个文件可能包含了关于许可证的重要信息,如许可证的类型、许可证持有者的身份以及所授权的具体内容等。然而,由于缺乏具体的文件内容,我们无法给出更加详细和准确的解释。 总之,license_eval_halcon_steady_2023_02 2023-2-2 113433 3.dat 是一份用于评估Halcon稳定版本的许可证文件,有效期至2023年2月2日,许可证编号为113433。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值