NSGA-3优化算法介绍及案例实现(三个测试函数DTLZ1、DTLZ2和DTLZ3)

NSGA-3优化算法介绍及案例实现


0研究背景

写在前面:

 1.本代码基于MATLAB2019a版本,低版本或者不同版本可能会报错,mdl文件或slx文件打开可能会失败;
 2.如果运行时间过长,请观察设置参数是否一致。
 3.本博客附上算法运行图并详细介绍,如果转载请注明出处;
 4.如果本博客恰巧与您的研究有所关联,欢迎您的咨询qq1366196286


1NSGA-3算法的简单介绍

1.1 与NSGA-2算法的不同

   1)NSGA-3与NSGA-2的不同在于选择机制的不同,NSGA-2是运用拥挤距离和拥挤度来对同一非支配等级的个体进行选择(拥挤距离越大越好),而NSGA-3是运用分布参考点在高维目标下来维持种群的多样性。当面对三个及以上的多目标优化问题时,如果继续采用拥挤距离的话,NSGA-2算法的收敛性和多样性会不好,容易陷入局部最优。

   2)实际应用当中优化目标往往是三个及以上,由于所优化目标函数较多,pareto前沿难以表示,决策者无法选择自己需要的解。此外,性能指标的计算代价过大,算法结果不易评价。为此,NSGA-2适用于两个优化目标的应用问题,NSGA-3适用于三个及以上的高维应用问题。

1.2 NSGA-2算法的详细说明

多目标优化算法(四)NSGA3(NSGAIII)论文复现以及matlab和python的代码

[1] Deb K , Jain H . An Evolutionary Many-Objective Optimization Algorithm Using Reference Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601.

[2] Deb, Kalyanmoy & Thiele, Lothar & Laumanns, Marco & Zitzler, Eckart. (2002). Scalable Multi-Objective Optimization Test Problems.

[3] Tian Y , Xiang X , Zhang X , et al. Sampling Reference Points on the Pareto Fronts of Benchmark Multi-Objective Optimization Problems[C]// 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018.

[4] Sun Y , Yen G G , Yi Z . IGD Indicator-based Evolutionary Algorithm for Many-objective Optimization Problems[J]. IEEE Transactions on Evolutionary Computation, 2018.

[5] 袁源. 基于分解的多目标进化算法及其应用[D]

[6] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” Journal of the Association for Computing Machinery, vol. 22, no. 4, pp. 469–476, 1975.

[7] Schütze, Oliver & Esquivel, Xavier & Lara, Adriana & A Coello Coello, Carlos. (2019). Measuring the Averaged Hausdorff Distance to the Pareto Front of a Multi-Objective Optimization Problem.

2NSGA-3算法的案例实现

多目标优化的DTLZ基准问题详细介绍(最全概括)

多目标测试函数

  本博客以其中三个测试函数为例DTLZ1、DTLZ2和DTLZ3来验证NSGA-3算法。

2.1 测试函数DTLZ1

在这里插入图片描述
参考的多目标优化的DTLZ基准问题详细介绍(最全概括)
在这里插入图片描述

2.2 测试函数DTLZ2

在这里插入图片描述

参考的多目标优化的DTLZ基准问题详细介绍(最全概括)

在这里插入图片描述

2.3 测试函数DTLZ3

在这里插入图片描述

参考的多目标优化的DTLZ基准问题详细介绍(最全概括)

在这里插入图片描述

3总结


在这里插入图片描述

根据引用的内容,NSGA-III算法的流程图包括以下几个步骤:Normalize(归一化)、Associate(关联)、Niching(分区)分类器(Classification of Population into Non-dominated Levels)。具体流程如下: 1. 归一化(Normalize):使用结构化参考点或用户首选参考点,将原始参考点映射到归一化超平面上,确保每一代成员所跨越的空间多样性。 2. 关联(Associate):根据归一化得到的超平面上的点,确定每个个体的邻居引导向量。这一步骤有助于维持种群的多样性。 3. 分区(Niching):通过计算每个个体与其邻居之间的距离,将种群分成不同的区域。这有助于保持种群的多样性,并避免过度拥挤。 4. 分类器(Classification of Population into Non-dominated Levels):根据非支配水平,将种群划分为不同的非支配级别,以确定每个个体的非支配级别。这有助于确定个体的优越性非优越性。 综上所述,NSGA-III算法的流程图包括归一化、关联、分区分类器等步骤。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [[论文笔记] 第1篇: NSGA-III 算法原始论文笔记](https://blog.csdn.net/weixin_46854242/article/details/124203958)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昔时扬尘处

你的鼓励会让技术更加具有价值!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值