KDD2021 放榜,6 篇论文带你了解阿里妈妈AI技术

关于 KDD

ACM SIGKDD(国际数据挖掘与知识发现大会,简称 KDD)是国际数据挖掘领域的顶级会议,由 ACM 的数据挖掘及知识发现专委会(SIGKDD)主办,被中国计算机协会推荐为A类会议。自 1995 年以来已连续举办 26 届,今年将于 8月14日至18日 在新加坡举办。

据 KDD2021 官方发布的信息,本届会议共吸引了 1541 篇论文投递,其中有 238 篇论文被接收,接收率为15.44%,相比 KDD2020 的接收率16.9%有所下降。

阿里妈妈论文概述

阿里妈妈技术团队此次共有6篇论文被接收,涵盖深度学习、投放策略推荐、端到端机制优化、协同竞价博弈等多个方向的技术沉淀和应用。关注公众号,回复 KDD 一次性获取已公开论文下载链接~

为系统性探讨深度学习在大规模工业级稀疏数据上的应用实践及高度个性化内容体验目标下的数字广告趋势,阿里妈妈资深技术专家怀人和广呆还将在会议期间组织和主持两场 workshop(线上线下同步):DLP-KDD 和 AdKDD,欢迎感兴趣的同学关注并参与。

今天,我们带来了这次被接收的6篇论文(其中5篇已开放下载)。接下来,我们会陆续邀请论文作者来为大家详细解析论文思路和技术成果,敬请期待!

▐  A Unified Solution to Constrained Bidding in Online Display Advertising

一种对在线展示广告约束出价问题的通用解决方案

摘要:在线展示广告场景下,广告主通常以实时竞价的方式获取曝光机会。在大多数广告平台,广告主最常见的需求就是在预算及某些KPI约束下最大化竞得流量的价值(如在预算和点击成本约束下最大化点击量)。每个广告主的投放需求在营销目标(如点击、曝光)、KPI约束类型(如点击成本上界、点击率下界)以及KPI约束数量三个维度上都有很大不同。现有的研究通常局限于某个特定的投放需求,缺乏通用性,或者很难达到最优投放结果。

在本文中,我们将广告主的各种投放需求形式化为约束出价问题,并且推导出了统一的最优出价策略。对于每个广告投放计划来说,其最优出价公式由m个参数组成,m为约束数量。然而在实际应用过程中,由于参竞环境不断波动,确定每天的最优出价参数是很困难的事。针对该问题,本文提出了一个强化学习方法,该方法会在计划投放过程中根据投放状态动态调整出价参数,使其尽可能逼近最优参数。其中,我们基于约束出价问题的子问题特性,对强化学习训练过程进行了优化࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值