决策树及其剪枝方法学习笔记

决策树


信息量:

l o g 2 1 p ( x i ) log _{2} \frac{1}{p\left(x_{i}\right)} log2p(xi)1

信息熵(不确定性度量),熵为各事件信息量的“数学期望”:

熵越大,随机变量的不确定性越大。

H ( p ) = − ∑ i = 1 n p i log ⁡ p i H(p)=-\sum_{i=1}^{n} p_{i} \log p_{i} H(p)=i=1npilogpi,其中 0 ≤ H ( p ) ≤ log ⁡ n 0 \leq H(p) \leq \log n 0H(p)logn

条件熵:表示已知随机变量X的条件下随机变量Y的不确定性。

H ( Y ∣ X ) = ∑ i = 1 n p i H ( Y ∣ X = x i ) H(Y \mid X)=\sum_{i=1}^{n} p_{i} H\left(Y \mid X=x_{i}\right) H(YX)=i=1npiH(YX=xi)

信息增益(ID3):特征A对训练数据集D的信息增益, g ( D , A ) g(D,A) g(D,A),定义为集合D的经验熵 H ( D ) H(D) H(D)与特征A给定条件下D的经验条件熵 H ( D ∣ A ) H(D|A) H(DA)之差,即:

g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D \mid A) g(D,A)=H(D)H(DA)

H ( D ∣ A ) = ∑ k = 1 K ∣ D i ∣ ∣ D ∣ H ( D i ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ ∑ k = 1 K ∣ D i k ∣ ∣ D i ∣ log ⁡ 2 ∣ D i k ∣ ∣ D i ∣ H(D \mid A)=\sum_{k=1}^{K} \frac{\left|D_{i}\right|}{|D|} H\left(D_{i}\right)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \sum_{k=1}^{K} \frac{\left|D_{i k}\right|}{\left|D_{i}\right|} \log _{2} \frac{\left|D_{i k}\right|}{\left|D_{i}\right|} H(DA)=k=1KDDiH(Di)=i=1nDDik=1KDiDiklog2DiDik

计算每一个属性的信息增益,选择信息增益最大的属性。

以信息增益作为划分训练数据即的特征,存在偏向于选择取值较多的特征的问题(属性值越多信息增益会越大),使用信息增益比可以对这一问题进行矫正。

信息增益比(C4.5):特征A对训练数据集D的信息增益比定义为信息增益与训练数据集D关于特征A的值的熵之比:

g R ( D , A ) = g ( D , A ) H A ( D ) g_{R}(D, A)=\frac{g(D, A)}{H_{A}(D)} gR(D,A)=HA(D)g(D,A) H A ( D ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ log ⁡ 2 ∣ D i ∣ ∣ D ∣ H_{A}(D)=-\sum_{i=1}^{n} \frac{\left|D_{i}\right|}{|D|} \log _{2} \frac{\left|D_{i}\right|}{|D|} HA(D)=i=1nDDilog2DDi


决策树面临的问题及剪枝:

理想的决策树:

  • 叶子结点数最少
  • 叶子结点深度最小
  • 叶子结点数最少且叶子结点深度最小

决策树的剪枝:通过极小化决策树整体的损失函数或代价函数来实现。

设树 T T T的叶结点个数为 ∣ T ∣ |T| T t t t是树 T T T的叶结点,该叶结点有 N t N_{t} Nt个样本点,其中 k k k类的样本点有 N t k N_{tk} Ntk个, k = 1 , 2.. K k = 1,2..K k=1,2..K H t ( T ) H_{t}(T) Ht(T)为叶结点 t t t上的经验熵, α > = 0 \alpha>=0 α>=0为参数,损失函数为:

C α ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) + α ∣ T ∣ C_{\alpha}(T)=\sum_{t=1}^{|T|} N_{t} H_{t}(T)+\alpha|T| Cα(T)=t=1TNtHt(T)+αT,其中 ∑ t = 1 ∣ T ∣ N t H t ( T ) \sum_{t=1}^{|T|} N_{t} H_{t}(T) t=1TNtHt(T)为预测误差损失(拟合性), α ∣ T ∣ \alpha|T| αT为模型复杂度损失(泛化性),因为我们知道信息熵是一个数学期望,所以要进行加权 N t N_{t} Nt

H t ( T ) = − ∑ k N t k N t log ⁡ N t k N t H_{t}(T)=-\sum_{k} \frac{N_{t k}}{N_{t}} \log \frac{N_{t k}}{N_{t}} Ht(T)=kNtNtklogNtNtk,则: C ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) = − ∑ t = 1 ∣ T ∣ ∑ k = 1 K N t k log ⁡ N t k N t C(T)=\sum_{t=1}^{|T|} N_{t} H_{t}(T)=-\sum_{t=1}^{|T|} \sum_{k=1}^{K} N_{t k} \log \frac{N_{t k}}{N_{t}} C(T)=t=1TNtHt(T)=t=1Tk=1KNtklogNtNtk C α ( T ) = C ( T ) + α ∣ T ∣ C_{\alpha}(T)=C(T)+\alpha|T| Cα(T)=C(T)+αT

对固定的 a a a一定存在损失函数最小子树,表示为 T a T_{a} Ta,当 a a a变大时,最优子树 T a T_{a} Ta偏小, a = 0 a=0 a=0时,整体树最优, a a a趋于无穷大,单结点最优。

树剪枝算法:

输入:生成算法产生的整个树 T T T,参数 α \alpha α;

输出:修剪后的子树 T α T_{\alpha} Tα

  • 1)计算每个结点的经验熵;
  • 2)递归地从树的叶结点向上回缩。
    • 设一组叶结点回缩到其父结点之后与之前的损失函数分别为: C α ( T A ) C_{\alpha}(T_{A}) Cα(TA) C α ( T B ) C_{\alpha}(T_{B}) Cα(TB)
    • 如果: C α ( T A ) ≤ C α ( T B ) C_{\alpha}\left(T_{A}\right) \leq C_{\alpha}\left(T_{B}\right) Cα(TA)Cα(TB)则进行剪枝
  • 3)返回2),直至不能继续为止,得到损失函数最小的子树 T α T_{\alpha} Tα
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值