多目标追踪——【两阶段】BoT-SORT: Robust Associations Multi-Pedestrian Tracking

文章链接:BoT-SORT: Robust Associations Multi-Pedestrian Tracking提取码:qqzd
代码链接:https://github.com/NirAharon/BOT-SORT

文章侧重点

  1. 本篇文章的工作是基于ByteTrack改进。主要贡献在于将卡尔曼滤波+相机修正作为目标重识别的运动信息,在用匈牙利匹配过程中,同时加入了外观相似度和运动相似度。
  2. 与ByteTrack区别:相似之处:都是两次关联目标框,这点在代码中尤为明显。不同之处:Bytetrack主要比较的是目标检测器输出的目标候选框IoU相似度,没有考虑目标的运动信息。
  3. 本篇文章针对ByteTrack有两个改进之处:
    • 运动模型估计【在卡尔曼滤波的基础上加入相机运动补偿】
    • IoU相似度与特征余弦距离的相似度融合
  4. 该文章的主要亮点应该就是将相机运动与卡尔曼滤波结合,并且将基于匀速假设的卡尔曼滤波中的状态变量修正为边界框点之间相关的状态变量,并且将相机运动整合到了卡尔曼滤波的经典更新公式中。

流程框架

请添加图片描述

运动模型

卡尔曼滤波模型

  1. 状态变量修改如下:
    请添加图片描述
    x k x_k xk
BoT-SORT是发表于2022年的先进的多目标跟踪算法,它结合了运动和外观信息、相机运动补偿和更准确的卡尔曼滤波状态向量,并把这些改进集成到ByteTrack,从而在MOTA、IDF1和HOTA性能指标上超过了ByteTrack,增强了目标跟踪的鲁棒性,比较适用于存在相机运动的场景。YOLOv8代码中已集成了BoT-SORT。本课程使用YOLOv8和BoT-SORT对视频中的行人、车辆做多目标跟踪计数与越界识别,开展YOLOv8目标检测和BoT-SORT多目标跟踪强强联手的应用。课程分别在Windows和Ubuntu系统上做项目演示,并对BoT-SORT原理和代码做详细解读(使用PyCharm单步调试讲解)。课程包括:基础篇、实践篇、原理篇和代码解析篇。Ÿ  基础篇包括多目标跟踪任务介绍、常用数据集和评估指标;Ÿ  实践篇包括Win10和Ubuntu系统上的YOLOv8+BoT-SORT的多目标跟踪计数与越界识别具体的实践操作步骤演示;Ÿ  原理篇中讲解了马氏距离、匈牙利算法、卡尔曼滤波器、SORT、DeepSORTBoT-SORT多目标跟踪算法的原理,并解读了BoT-SORT论文;Ÿ  代码解析篇中使用PyCharm单步调试对BoT-SORT的代码逐个文件进行讲解。课程提供代码解析文档。相关课程:《YOLOv8+ByteTrack多目标跟踪(行人车辆计数与越界识别)》https://edu.csdn.net/course/detail/38901《YOLOv8+DeepSORT多目标跟踪(行人车辆计数与越界识别)》 https://edu.csdn.net/course/detail/38870《YOLOv5+DeepSORT多目标跟踪与计数精讲》https://edu.csdn.net/course/detail/32669 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值