文章链接:BoT-SORT: Robust Associations Multi-Pedestrian Tracking提取码:qqzd
代码链接:https://github.com/NirAharon/BOT-SORT
文章侧重点
- 本篇文章的工作是基于ByteTrack改进。主要贡献在于将卡尔曼滤波+相机修正作为目标重识别的运动信息,在用匈牙利匹配过程中,同时加入了外观相似度和运动相似度。
- 与ByteTrack区别:相似之处:都是两次关联目标框,这点在代码中尤为明显。不同之处:Bytetrack主要比较的是目标检测器输出的目标候选框IoU相似度,没有考虑目标的运动信息。
- 本篇文章针对ByteTrack有两个改进之处:
- 运动模型估计【在卡尔曼滤波的基础上加入相机运动补偿】
- IoU相似度与特征余弦距离的相似度融合
- 该文章的主要亮点应该就是将相机运动与卡尔曼滤波结合,并且将基于匀速假设的卡尔曼滤波中的状态变量修正为边界框点之间相关的状态变量,并且将相机运动整合到了卡尔曼滤波的经典更新公式中。
流程框架
运动模型
卡尔曼滤波模型
- 状态变量修改如下:
x k x_k xk