一、问题背景
我们往往在训练模型的时候,学习率不能是一成不变的,大的学习率收敛快,但可能出现过拟合的情况,难以达到最优点;小的学习率收敛较慢,耗时较长,但能将loss降得更低。
因此训练全过程并不是使用一个固定值的学习速度,而是随着时间的推移让学习率动态变化,比如刚开始训练,离下山地点的最优值还很远,那么可以使用较大的学习率下的快一点,当快接近最优值时为避免跨过最优值,下山速度要放缓,即应使用较小学习率训练,具体情况下因为我们也不知道训练时的最优值。
二、解决方案
一种比较经典的策略就是warmup策略
,warmup顾名思义就是热身,即在刚刚开始训练时以很小的学习率进行训练,使得网络熟悉数据,随着训练的进行学习率慢慢变大,到了一定程度,以设置的初始学习率进行训练,模型稳定后学习率再慢慢变小;学习率变化过程:上升—>平稳—>下降;这样会使模型的收敛效果较好。
所以在pytorch中具体的解决办法有:
# warmup的方法可以自己实现,这里介绍optim库中自带的scheduler方法
import torch.optim as optim
from torch.optim import lr_scheduler
'''
(1)等间隔调整学习率 StepLR
(2)按需调整学习率 MultiStepLR
(3)指数衰减调整学习率 ExponentialLR
(4)余弦退火调整学习率 CosineAnnealingLR
(5)自适应调整学习率 ReduceLROnPlateau
(6)自定义调整学习率 LambdaLR
'''
# 例如 StepLR
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler1 = lr_scheduler.StepLR(optimizer, 5, 0.5) # 每过5个epoch,学习率乘以0.1
# …… 其他方法的具体使用可以去搜索对应的函数说明文档
scheduler5 = lr_scheduler.ReduceLROnPlateau() # 这种方法则不受epoch的影响,取决于我们的参数的“min”、“max”和我们检测目标是loss还是acc。
scheduler6 = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch:1/(epoch+1))