MetaD2A

Motivate

Conventional NAS method search for a novel architecture from scratch for a given unseen dataset, such task-specific methods search for a neural architecture from scratch for every given task, they incur a large computational cost.

This paper proposed an efficient NAS framework that is trained once on a database consisting of datasets and pretrained networks and can rapidly search for a neural architecture for a
novel dataset.

A meta-performance predictor was also introduced to estimate and select the best generated architecture.

Dataset

Dataset for training
To meta-learn our model, we practically collect multiple tasks where each task consists of (dataset, architecture, accuracy).

ImageNet-1K is compiled as multiple sub-sets by randomly sampling 20 classes and search for the set-specific architecture of each sampled dataset using random search among high-quality architectures

For the predictor, we additionally collect 2,920 tasks through random sampling

Method

Generator training

We meta-learn the model using:
在这里插入图片描述
where:
在这里插入图片描述the first term of the objectve can be rewritten as :
在这里插入图片描述
Oi denote nodes and e ji denote edges

MetaTest

Graph Decoding

For a given dataset, sample num_sample instances per category , concat and feed them into Set encoder. After encode the give dateset, a batch of set-dependent latent codes z can be obtained from dataset-conditioned Gaussian distribution taking the encoded unseen dataset as input.

在这里插入图片描述

When generating i-th node Vi, we will compute the operation type O over N candidate operation of this node based on current graph state Hg = Hvi-1

Ovi is defined as follows:
在这里插入图片描述
We update the hidden state Hvi as follows:
在这里插入图片描述
function UPDATE is a GRU, m is the incoming message to vi

we decide whether to link an edge vj to vi based on edge connection e{vj, vi} = N N e d g e ( h j , h i ) NN_{edge}(h_j, h_i) NNedge(hj,hi), incorporating the initial state H 0 H_0 H0 is also feasible .

在这里插入图片描述

Accuracy prediction
After we generated the set-dependent architectures, the predictor will predict accuracies S i S_i Si for a give unseen dataset D i D_i Di and each generated candidate architecture G i G_i Gi and then select the architecture with highest predicted accuracy.

Set encoder
Inputting the sampled instances into the IntraSetPool, the intra-class encoder, to encode
class prototype V c ∈ R b a t c h ∗ d x V_c \in \R^{batch * d_x} VcRbatchdx for each class c = 1....... C c=1.......C c=1.......C. Then we further feed the class-specific set representations V c V_c Vc into the InterSetPool, the inter-class encoder, to generate the dataset
representation H H H as follows:
在这里插入图片描述

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值