混沌优化算法

混沌优化算法是一种借鉴混沌系统特性进行搜索的方法,具有随机性、规律性、遍历性和敏感性。Logistic映射是混沌理论中的经典例子,在特定参数下能产生非周期、不收敛的序列。在算法中,通过生成混沌向量进行目标向量的突变和交叉,以探索全局最优解。该方法将空气分子的随机运动比作搜索过程,确保至少能触及全局最优值。混沌参数和方向因子在混沌向量生成中起关键作用,为优化问题提供了新的解决思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

混沌优化算法

性质:

  1. 随机性
  2. 规律性
  3. 遍历性
  4. 敏感性

混乱进化的原理:是模拟混沌遍历运动以实现搜索

logistic映射(一维混沌系统)在这里插入图片描述

解释:
n为迭代次数,n=1, 2,, n, n为最大的迭代次数;µ为控制参数;
当µ=4时,X1∈ (0, 1) ,且X1≠{0.25, 0.5, 0.75}时,是一个混沌系统。

Logistic映射工作处于混沌状态,也就是说,有初始条件X在Logistic映射作用下产生的序列是非周期的、不收敛的。

混乱进化

在这里插入图片描述

图中圆点比喻成空气分子,红色三角代表全局最优点;
空气因子随机运动,至少到达一次全局最优值。

生成混沌向量是混乱进化中的关键操作:

这里是引用

解释:
从目标向量(targeti)生成一个突变向量(mutanti)
将目标向量与突变向量交叉
生成一个混沌向量(chaotic)
Di是方向因子,其值可以为1-1。 
CPi是一个混沌参数,它最初被设置为(0,1]范围内的随机值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值