基于深度学习的滚刀寿命识别(原创+高分创新+论文)

基于深度学习的刀具磨损状态识别

代码链接

基于卷积神经网络的刀具磨损状态识别

刀具磨损状态识别为时间序列分类问题,而一维卷积神经网络(1D Convolutional Neural Networks,1DCNN)在时间序列分类问题中具有明显的优势[1],特别是它能够捕捉时间序列数据中的局部特征和模式。因此,本小节基于1DCNN实现刀具磨损状态识别,其网络输入输出关系如图3-1所示。

在这里插入图片描述
图3-1中,None表示将要输入网络训练的每个批次样本数量。首先,经过特征提取和斯皮尔曼相关性分析选取刀片数据的特征个数为57,为适应1DCNN的输入形状,将该数据reshape增加一个维度作为输入层的数据;其次,依次交叉堆叠3次一维卷积和最大池化层,卷积层的神经元个数依次为32、64、128,卷积核大小为3×3,激活函数为relu,同时卷积层的padding设置为same,保持特征图大小不变;然后,使用Flatten层拉平向量,并依次堆叠两个神经元个数为128、64的全连接层,通过这两个全连接层,将长度为896的一维向量映射为长度64的一维向量;最后,使用激活函数为softmax的全连接层作为分类层,将特征向量映射为长度为3的分类概率向量,选取概率最大值对应的索引即为分类结果。本小节构建的1DCNN网络结构如图3-2所示。
在这里插入图片描述
选取铣刀1走刀数据为训练集,铣刀4和铣刀6走刀数据集为测试集,共包括初期磨损、正常磨损、急剧磨损三个类别,各类别数据分布情况如表3-1所示。

数据集初期磨损正常磨损急剧磨损
训练集铣刀13021075
训练集铣刀43021075
训练集铣刀63021075

将训练集铣刀1、测试集铣刀4和6进行特征提取,提取后的特征维度达57,使用训练集铣刀1提取的特征训练1DCNN分类模型,得到训练好的网络权重。然后,使用该权重初始化1DCNN,使用测试集铣刀4和6评估模型性能,测试集的分类结果如图3-3和3-4所示。1DCNN在测试集铣刀4和6的分类准确率分别为82.539%和87.619%。图3-3中,横坐标为测试集样本编号,纵坐标为一分类预测结果。
在这里插入图片描述
在这里插入图片描述

基于长短时记忆神经网络的刀具磨损状态识别

LSTM(Long Short-Term Memory)是一种特殊类型的RNN(递归神经网络),专为解决标准RNN在处理长序列数据时遇到的短期记忆问题而设计。LSTM通过引入遗忘门、输入门和输出门,能够在长时间间隔内有效地保存和调用信息。LSTM最大的优势在于其能够捕捉时间序列中的长期依赖关系,这使得它非常适合于时间序列数据。因此,本小节采用LSTM对铣刀走刀数据进行建模,实现对刀具模型状态的识别。
在这里插入图片描述
图3-5中,None表示将要输入网络训练的每个批次样本数量。经过特征提取和斯皮尔曼相关性分析的刀片数据特征个数为57,因LSTM的输入需要有timeStep的长度设置,而本文研究仅对整个样本进行了特征提取,故将输入特征reshape增加一个维度,使得timeStep为1;然后,堆叠三层神经元个数为128的LSTM网络,实现时间序列分类的建模;最后,通过全连接层完成刀具磨损分类。
选取铣刀1走刀数据为训练集,铣刀4和铣刀6走刀数据集为测试集,与3.1同理。LSTM在测试集铣刀4和6的分类准确率分别为77.143%和90.476%。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 19
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VIT19980106

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值