基于深度学习的短时交通流量预测(TCGCN)

引言

提出一种基于TCGCN的短时交通流量预测模型,该模型结合了TCN和GCN两种强大的时序预测模型,并通过多尺度卷积和自注意力机制改进网络结构,有效提高模型短时交通流量预测的精度。

TCGCN

TCGCN结合了时间卷积网络(TCN)和图卷积网络(GCN)的特性,以便有效处理图时间序列数据[35]。
TCN中每个卷积层使用扩张卷积,以便捕捉时间序列数据中的长期依赖关系。扩张卷积可以表示为:
在这里插入图片描述
卷积操作后,每个卷积层都通过一个修剪操作(Chomp1d),以确保卷积不会引入未来的信息。修剪操作的目的是从卷积输出中去除多余的时间步,这些时间步是由于扩张卷积和填充引入的。这一步是TCN处理时间序列的关键部分,确保了因果关系和时间一致性。

为了加强网络的学习能力并避免在深层网络中出现的梯度消失问题,TCN模块使用残差连接,可以表示为:
在这里插入图片描述
在这里插入图片描述

整体结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VIT19980106

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值