引言
提出一种基于TCGCN的短时交通流量预测模型,该模型结合了TCN和GCN两种强大的时序预测模型,并通过多尺度卷积和自注意力机制改进网络结构,有效提高模型短时交通流量预测的精度。
TCGCN
TCGCN结合了时间卷积网络(TCN)和图卷积网络(GCN)的特性,以便有效处理图时间序列数据[35]。
TCN中每个卷积层使用扩张卷积,以便捕捉时间序列数据中的长期依赖关系。扩张卷积可以表示为:
卷积操作后,每个卷积层都通过一个修剪操作(Chomp1d),以确保卷积不会引入未来的信息。修剪操作的目的是从卷积输出中去除多余的时间步,这些时间步是由于扩张卷积和填充引入的。这一步是TCN处理时间序列的关键部分,确保了因果关系和时间一致性。
为了加强网络的学习能力并避免在深层网络中出现的梯度消失问题,TCN模块使用残差连接,可以表示为: