求积分 ∫ 0 1 ln ( 1 + 1 − x ) − ln 2 x d x = ln 2 2 − π 2 12 \int_0^1{\frac{\ln \left( 1+\sqrt{1-x} \right) -\ln 2}{x}}dx=\ln ^22-\frac{\pi ^2}{12} ∫01xln(1+1−x)−ln2dx=ln22−12π2
考虑含参积分 I ( a ) = ∫ 0 1 x ln ( 1 + a x ) 1 − x 2 d x I\left( a \right) =\int_0^1{\frac{x\ln \left( 1+ax \right)}{1-x^2}}dx I(a)=∫011−x2xln(1+ax)dx
求导得 I ′ ( a ) = ∫ 0 1 x 2 ( 1 + a x ) ( 1 − x 2 ) d x = 1 1 − a 2 ∫ 0 1 1 − a x 1 − x 2 − 1 1 + a x d x I'\left( a \right) =\int_0^1{\frac{x^2}{\left( 1+ax \right) \left( 1-x^2 \right)}}dx=\frac{1}{1-a^2}\int_0^1{\frac{1-ax}{1-x^2}-\frac{1}{1+ax}}dx I′(a)=∫01(1+ax)(1−x2)x2dx=1−a21∫011−x21−ax−1+ax1dx
= 1 2 ( 1 + a ) ∫ 0 1 1 1 − x d x + 1 2 ( 1 − a ) ∫ 0 1 1 1 + x d x − 1 1 − a 2 ∫ 0 1 1 1 + a x d x \qquad\qquad\qquad\qquad=\frac{1}{2\left( 1+a \right)}\int_0^1{\frac{1}{1-x}}dx+\frac{1}{2\left( 1-a \right)}\int_0^1{\frac{1}{1+x}}dx-\frac{1}{1-a^2}\int_0^1{\frac{1}{1+ax}}dx =2(1+a)1∫011−x1dx+2(1−a)1∫011+x1dx−1−a21∫011+ax1dx
注意到 ∫ 0 1 x ln ( 1 + x ) 1 − x 2 d x = ∫ 0 1 1 1 − y d y ∫ 0 1 1 1 + x d x − ∫ 0 1 1 1 − y 2 d y ∫ 0 1 1 1 + x y d x \int_0^1{\frac{x\ln \left( 1+x \right)}{1-x^2}}dx=\int_0^1{\frac{1}{1-y}}dy\int_0^1{\frac{1}{1+x}}dx-\int_0^1{\frac{1}{1-y^2}}dy\int_0^1{\frac{1}{1+xy}}dx ∫011−x2xln(1+x)dx=∫011−y1dy∫011+x1dx−∫011−y21dy∫011+xy1dx
考虑二重积分 I ( x , y ) = ∫ 0 1 1 1 − y 2 d y ∫ 0 1 1 1 + x y d x = ∫ 0 1 ln ( 1 + y ) ( 1 − y 2 ) y d y = ∫ 0 1 y ln ( 1 + y 2 ) 1 − y 2 + ln ( 1 + y ) y d y I\left( x,y \right) =\int_0^1{\frac{1}{1-y^2}}dy\int_0^1{\frac{1}{1+xy}}dx=\int_0^1{\frac{\ln \left( 1+y \right)}{\left( 1-y^2 \right) y}}dy=\int_0^1{\frac{y\ln \left( 1+y^2 \right)}{1-y^2}+\frac{\ln \left( 1+y \right)}{y}}dy I(x,y)=∫011−y21dy∫011+xy1dx=∫01(1−y2)yln(1+y)dy=∫011−y2yln(1+y2)+yln(1+y)dy
即得 ∫ 0 1 x ln ( 1 + x ) 1 − x 2 d x = 1 2 ( ∫ 0 1 1 1 − y d y ∫ 0 1 1 1 + x d x − ∫ 0 1 ln ( 1 + x ) x d x ) = ln 2 2 ∫ 0 1 1 1 − x d x − π 2 24 \int_0^1{\frac{x\ln \left( 1+x \right)}{1-x^2}}dx=\frac{1}{2}\left( \int_0^1{\frac{1}{1-y}}dy\int_0^1{\frac{1}{1+x}}dx-\int_0^1{\frac{\ln \left( 1+x \right)}{x}}dx \right) =\frac{\ln 2}{2}\int_0^1{\frac{1}{1-x}}dx-\frac{\pi ^2}{24} ∫011−x2xln(1+x)dx=21(∫011−y1dy∫011+x1dx−∫01xln(1+x)dx)=2ln2∫011−x1dx−24π2
又 ∫ 0 1 ln 2 ⋅ 2 x 1 − x 2 d x = − ln 2 2 + ln 2 ∫ 0 1 1 1 − x d x \int_0^1{\frac{\ln 2\cdot 2x}{1-x^2}}dx=-\ln ^22+\ln 2\int_0^1{\frac{1}{1-x}}dx ∫011−x2ln2⋅2xdx=−ln22+ln2∫011−x1dx
从而 ∫ 0 1 ln ( 1 + 1 − x ) − ln 2 x d x = 2 ( ln 2 2 ∫ 0 1 1 1 − x d x − π 2 24 ) − ( − ln 2 2 + ln 2 ∫ 0 1 1 1 − x d x ) = ln 2 2 − π 2 12 \int_0^1{\frac{\ln \left( 1+\sqrt{1-x} \right) -\ln 2}{x}}dx=2\left( \frac{\ln 2}{2}\int_0^1{\frac{1}{1-x}}dx-\frac{\pi ^2}{24} \right) -\left( -\ln ^22+\ln 2\int_0^1{\frac{1}{1-x}}dx \right) =\ln ^22-\frac{\pi ^2}{12} ∫01xln(1+1−x)−ln2dx=2(2ln2∫011−x1dx−24π2)−(−ln22+ln2∫011−x1dx)=ln22−12π2