一则有难度的积分级数问题

求积分 ∫ 0 1 ln ⁡ ( 1 + 1 − x ) − ln ⁡ 2 x d x = ln ⁡ 2 2 − π 2 12 \int_0^1{\frac{\ln \left( 1+\sqrt{1-x} \right) -\ln 2}{x}}dx=\ln ^22-\frac{\pi ^2}{12} 01xln(1+1x )ln2dx=ln2212π2

考虑含参积分 I ( a ) = ∫ 0 1 x ln ⁡ ( 1 + a x ) 1 − x 2 d x I\left( a \right) =\int_0^1{\frac{x\ln \left( 1+ax \right)}{1-x^2}}dx I(a)=011x2xln(1+ax)dx

求导得 I ′ ( a ) = ∫ 0 1 x 2 ( 1 + a x ) ( 1 − x 2 ) d x = 1 1 − a 2 ∫ 0 1 1 − a x 1 − x 2 − 1 1 + a x d x I'\left( a \right) =\int_0^1{\frac{x^2}{\left( 1+ax \right) \left( 1-x^2 \right)}}dx=\frac{1}{1-a^2}\int_0^1{\frac{1-ax}{1-x^2}-\frac{1}{1+ax}}dx I(a)=01(1+ax)(1x2)x2dx=1a21011x21ax1+ax1dx

= 1 2 ( 1 + a ) ∫ 0 1 1 1 − x d x + 1 2 ( 1 − a ) ∫ 0 1 1 1 + x d x − 1 1 − a 2 ∫ 0 1 1 1 + a x d x \qquad\qquad\qquad\qquad=\frac{1}{2\left( 1+a \right)}\int_0^1{\frac{1}{1-x}}dx+\frac{1}{2\left( 1-a \right)}\int_0^1{\frac{1}{1+x}}dx-\frac{1}{1-a^2}\int_0^1{\frac{1}{1+ax}}dx =2(1+a)1011x1dx+2(1a)1011+x1dx1a21011+ax1dx

注意到 ∫ 0 1 x ln ⁡ ( 1 + x ) 1 − x 2 d x = ∫ 0 1 1 1 − y d y ∫ 0 1 1 1 + x d x − ∫ 0 1 1 1 − y 2 d y ∫ 0 1 1 1 + x y d x \int_0^1{\frac{x\ln \left( 1+x \right)}{1-x^2}}dx=\int_0^1{\frac{1}{1-y}}dy\int_0^1{\frac{1}{1+x}}dx-\int_0^1{\frac{1}{1-y^2}}dy\int_0^1{\frac{1}{1+xy}}dx 011x2xln(1+x)dx=011y1dy011+x1dx011y21dy011+xy1dx

考虑二重积分 I ( x , y ) = ∫ 0 1 1 1 − y 2 d y ∫ 0 1 1 1 + x y d x = ∫ 0 1 ln ⁡ ( 1 + y ) ( 1 − y 2 ) y d y = ∫ 0 1 y ln ⁡ ( 1 + y 2 ) 1 − y 2 + ln ⁡ ( 1 + y ) y d y I\left( x,y \right) =\int_0^1{\frac{1}{1-y^2}}dy\int_0^1{\frac{1}{1+xy}}dx=\int_0^1{\frac{\ln \left( 1+y \right)}{\left( 1-y^2 \right) y}}dy=\int_0^1{\frac{y\ln \left( 1+y^2 \right)}{1-y^2}+\frac{\ln \left( 1+y \right)}{y}}dy I(x,y)=011y21dy011+xy1dx=01(1y2)yln(1+y)dy=011y2yln(1+y2)+yln(1+y)dy

即得 ∫ 0 1 x ln ⁡ ( 1 + x ) 1 − x 2 d x = 1 2 ( ∫ 0 1 1 1 − y d y ∫ 0 1 1 1 + x d x − ∫ 0 1 ln ⁡ ( 1 + x ) x d x ) = ln ⁡ 2 2 ∫ 0 1 1 1 − x d x − π 2 24 \int_0^1{\frac{x\ln \left( 1+x \right)}{1-x^2}}dx=\frac{1}{2}\left( \int_0^1{\frac{1}{1-y}}dy\int_0^1{\frac{1}{1+x}}dx-\int_0^1{\frac{\ln \left( 1+x \right)}{x}}dx \right) =\frac{\ln 2}{2}\int_0^1{\frac{1}{1-x}}dx-\frac{\pi ^2}{24} 011x2xln(1+x)dx=21(011y1dy011+x1dx01xln(1+x)dx)=2ln2011x1dx24π2

∫ 0 1 ln ⁡ 2 ⋅ 2 x 1 − x 2 d x = − ln ⁡ 2 2 + ln ⁡ 2 ∫ 0 1 1 1 − x d x \int_0^1{\frac{\ln 2\cdot 2x}{1-x^2}}dx=-\ln ^22+\ln 2\int_0^1{\frac{1}{1-x}}dx 011x2ln22xdx=ln22+ln2011x1dx

从而 ∫ 0 1 ln ⁡ ( 1 + 1 − x ) − ln ⁡ 2 x d x = 2 ( ln ⁡ 2 2 ∫ 0 1 1 1 − x d x − π 2 24 ) − ( − ln ⁡ 2 2 + ln ⁡ 2 ∫ 0 1 1 1 − x d x ) = ln ⁡ 2 2 − π 2 12 \int_0^1{\frac{\ln \left( 1+\sqrt{1-x} \right) -\ln 2}{x}}dx=2\left( \frac{\ln 2}{2}\int_0^1{\frac{1}{1-x}}dx-\frac{\pi ^2}{24} \right) -\left( -\ln ^22+\ln 2\int_0^1{\frac{1}{1-x}}dx \right) =\ln ^22-\frac{\pi ^2}{12} 01xln(1+1x )ln2dx=2(2ln2011x1dx24π2)(ln22+ln2011x1dx)=ln2212π2

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值