分布式优化 (Distributed Optimization) 算法详解及案例分析
目录
1. 引言
分布式优化(Distributed Optimization)是一种将优化问题分解为多个子问题并在多个计算节点上并行求解的方法。随着数据规模的不断增长和计算资源的分布式化,分布式优化在大规模机器学习、信号处理、网络优化等领域得到了广泛应用。
本文将详细介绍分布式优化的基本概念、主要方法、数学基础,并通过三个实际案例(分布式线性回归、分布式逻辑回归、分布式矩阵分解)展示分布式优化的应用。每个案例均提供完整的 Python 实现代码,代码符合设计规范,算法封装为类或函数。
2. 分布式优化的基本概念
2.1 分布式优化的定义
分布式优化是一种将优化问题分解为多个子问题并在多个计算节点上并行求解的方法。其目标是通过分布式计算资源高效地求解大规模优化问题。
2.2 分布式优化的核心思想
分布式优化的核心思想包括:
- 问题分解:将全局优化问题分解为多个子问题。
- 并行计算:在多个计算节点