RMQ算法

我们先用一个例题来描述一下,RMQ所解决的问题类型

例:南将军统帅着N个士兵,士兵编号分别为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌数低的人,起到了很好的效果。

所以,南将军经常问军师小工第i号士兵到第J号士兵中,杀敌数最高的人与杀敌数最低的人之间的军工差值是多少。现在请你写一个程序,帮小工回答南将军每次的询问吧。注意,南将军可以询问很多次。

输入:

第一行是两个整数N,Q,其中N表示士兵的总数。Q表示南将军询问的次数。(1,N<=100000, 1<Q<=1000000)

随后的一行有N个整数Vi(0<=Vi<100000000),分别表示每个人的杀敌数。

再之后的Q行,每行有两个正整数m, n, 表示南将军询问的是第m号士兵到第n号士兵。

输出:

对于每次询问,输出第m号士兵到第n号士兵之间所有士兵杀敌数的最大值与最小值的差。

样例输入

5 2
1 2 6 9 3
1 2
2 4

样例输出

1
7

 

1.概述
RMQ( Range Minimum/Maximum Query) ,即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ ( A,i, j) (i, j<=n),返回数列A中下标在i,j之间的最小/大值。这两个问题是在实际应用中经常遇到的问题,下面介绍一下解决这两种问题的比较高效的算法。当然;该问题也可以用我段树(也叫区间树)解决,算法复杂度为: O(N)~OlogN) ,这里我们暂不介绍。

2.RMQ算法
      对于该问题,最容易想到的解决方案是遍历,复杂度是O(n)。但当数据量非常大且查询很频繁时,该算法无法在有效的时间内查询出正解。
      本节介绍了一种比较高效的在线算法( ST算法)解决这个问题。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。 该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST ( Sparse Table )算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

(一)首先是预处理,用动态规划(DP)解决。

设A数列为:3,2,4,5,6,8,12,9,7

F[1,0]表示第一个数起,长度为2^0 = 1的最大值,其实就是这三个数。同理F[1,1] = max(3,2) = 3,  F[1,2] = max(3,2,4,5) = 5,  F[1,3] = max(3,2,4,5,6,8,1,2) = 8;

并且我们可以容易地看出F[i, 0]就等于A[i]。(DP的初始值)。这样,DP的状态、初值就有了,剩下的就是状态转移方程。

我们把F[i, j]平均分成两段(因为F[i, j]一定是偶数个数字),从 i 到 i+2^(j-1)-1 为一段,i+2^(j-1) 到 i+2^j-1 为一段(长度都为 2^(j-1) )。用上例说明,当i = 1, j = 3时就是3,2,4,5和6,8,1,2这两段。F[i , j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程

F[i, j] = max( F[i, j-1],  F[i+2^(j-1), j-1] )。       代码如下:

void RMQ(int num)//预处理 ->O(nlogn)
{
    for(int j=1; j<20; j++)
    {
        for(int i=1; i<=num; i++)
        {
            if(i+(1<<j)-1 <= num)//限制条件
            {
                maxsum[i][j] = max( maxsum[i][j-1], maxsum[i+(1<<(j-1))[j-1] );//最大值;
                minsum[i][j] = min( minsum[i][j-1], minsum[i+(1<<(j-1))[j-1] );//最小值;
            }
        }
    }
}

  这里我们需要注意的是循环的顺序,我们发现外层是j, 内层是i, 这是为什么呢?可以是i在外,j在内吗?

  答案是不可以。因为我们需要理解这个状态转移方程的意义。

  状态转移方程的含义是:先更新所有长度为F[i, 0]即1个元素,然后通过2个 1个元素的最值,获得所有长度为F[i, 1]即2个元素的最值,然后再通过2个 2个元素的最值,获得所有长度为F[i, 2] 即4个元素的最值,以此类推更新所有长度的最值。

而如果是i在外,j在内的话,我们更新的顺序就是F[1, 0], F[1,1], F[1,2], F[1,3],表示更新从1开始1个元素,从1开始2个元素,从1开始4个元素,从1开始8个元素( A[0], A[1], ......A[7] )的最值, 这里F[1,3] = max( max(A[0], A[1], A[2], A[3]),  max(A[4], A[5], A[6], A[7]) )的值,但是我们根本没有计算max(A[0], A[1], A[2], A[3]),和 max(A[4], A[5], A[6], A[7]),所以这种方法是错误的的,为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。

(二)然后是查询

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。因为区间长度为j-i+1,所以我们可以取k = log( j-i+1 )(向下取整),则有RMQ(A, i,j) = max{ F[i, k], F[j-2^k+1, k] }。(这是因为,我们所获取的这个区间的长度很可能不是2^k个数,而且取k的时候一定要大于其长度的1/2, 否则可能会出现覆盖不完全的情况)。

代码如下:

//求从l到r区间的最大值;
int querymax(int l, int r)
{
    if(l>r)
        return -1;
    int k = (int)(log(r-l+1.0)/log(2.0));
    return max(maxx[l][k], maxx[r- (1 << k) + 1][k]);
}
//求从l到r区间的最小值;
int querymin(int l, int r)
{
    if(l>r)
        return -1;
    int k = (int)(log(r-l+1.0)/log(2.0));
    return min(minn[l][k], minn[r- (1 << k) + 1][k]);
}

举例说明,要求区间[2, 8]的最大值,k = log2(8-2+1) = 2,即求max( F[2,2], F[8-2^2+1, 2] ) = max( F[2,2], F[5,2] );

在这里我们也需要注意一个地方,就是<<运算符和+-运算符的优先级。比如这个表达式:5-1<<2  是多少,答案是:4*2*2 = 16。所以我们要写成5-(1<<2)才是5-1*2*2 = 1。

上边例题的代码;

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<stack>
#include <map>
#include <queue>
using namespace std;
const int maxn = 100010;
int a[maxn][21], b[maxn][21];
//预处理;
void RMQ(int n)
{
    for(int j=0; j<20; j++)
    {
        for(int i=1; i<=n; i++)
        {
            if(i+(1<<j)<=n)
            {
                a[i][j+1] = max(a[i][j], a[i+(1<<j)][j]);
                b[i][j+1] = min(b[i][j], b[i+(1<<j)][j]);
            }
        }
    }
}
int main()
{
    int n, q, i, x, y, Max, Min;
    while(scanf("%d%d", &n, &q)!=EOF)//输入士兵人数以及将军询问次数;
    {
        for(int i=1; i<=n; i++)
        {
            scanf("%d", &a[i][0]);//分别将士兵杀人数量输入计算最大值的数组和计算最小值的数组
            b[i][0] = a[i][0];
        }
        RMQ(n);//用RMQ进行预处理;
        while(q--)
        {
            scanf("%d%d", &x, &y);
            int k = (int )(log(y-x+1.0)/log(2.0));//查询;
            Max = max(a[x][k], a[y-(1<<k)+1][k]);//查询从x到y区间的最大值;
            Min = min(b[x][k], b[y-(1<<k)+1][k]);//查询从x到y区间的最小值;
            printf("%d\n", Max-Min);
        }
    }
    return 0;
}

 

整理摘抄自:https://www.bilibili.com/video/av12875063?from=search&seid=10564244890574191866

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值