RMQ维护区间最大值 O(nlogn)

本文介绍了如何使用线段树解决在大量数字中进行区间最大值查询的问题。线段树作为一种数据结构,能够支持动态维护和查询,对于给定的一串数字,在看过一次之后,可以快速回答任何两个数字之间的最大值。通过预处理和动态更新,线段树可以在常数时间内完成查询,从而有效应对大规模数据的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AcWing 1273. 天才的记忆

Source:AcWing or 《信息学奥赛一本通》

从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏。

在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。

题目是这样的:给你一大串数字(编号为 1 到 N,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你 M 个询问,每次询问就给你两个数字 A,B,要求你瞬间就说出属于 A 到 B 这段区间内的最大数。

一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。

但是,她每次都以失败告终,因为这数字的个数是在太多了!

于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!

输入格式
第一行一个整数 N 表示数字的个数。

接下来一行为 N 个数,表示数字序列。

第三行读入一个 M,表示你看完那串数后需要被提问的次数。

接下来 M 行,每行都有两个整数 A,B。

输出格式
输出共 M 行,每行输出一个数,表示对一个问题的回答。

数据范围
1≤N≤2×105,
1≤M≤104,
1≤A≤B≤N。

输入样例:

6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3

输出样例:

34
123
123
8

关于维护区间最大值有很多种解法,RMQ只能是离线操作,而线段树可以动态维护和查询,in a word ,
线段树可以支持边修改边查询,而RMQ只能生成ST表之后离线查询 这里先介绍RMQ算法 也就是 ST表 O(nlogn)

RMQ算法,实际上是基于动态规划预先处理数据,查询时时间复杂度是常数级。
f[i][j] 意思是从第i个开始长度为 2^j 区间中的最大值
那么f[i][j]的转移方程也就是 f[i][j] =max( f[i][j-1], f[i+2^(j-1)][j-1])

在这里插入图片描述

处理完ST表 接下来就是查询了

给定左边界l,右边界r 求区间最大值
首先我们可以确定区间长度len = r-l+1
设 2^k <= len
我们可以求出满足该条件的最大的k 那么 2 * 2^k >= len
然后取 max(f[l][k],f[r-2^k+1][k])
在这里插入图片描述
虽然可能有交叉但是两个子区间完全覆盖了父区间,取两子区间最大值即可

#include<bits/stdc++.h>
using namespace std;
const int N=200010,M=18;//取能覆盖题目最大范围的二进制M
int s[N];	
int n;
int f[N][M];
void RMQ(){
	for(int j=0;j<=M;j++){
		for(int i=1;i+(1<<j)-1<=n;i++){//i+(1<<j)-1<=n是因为右边界不能大于n
			if(!j) f[i][j]=s[i];//如果区间长度是1(2^0)那么该区间最大值就是这个数
			else f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
		}
	}
	return ;
}
int ask(int l,int r){
	int len=r-l+1;// 2^k<=len k<=log2(len)  
	//int mk=log(len)/log(2);换底公式
	int mk=log2(len);//直接求也未尝不可
	return max(f[l][mk],f[r-(1<<mk)+1][mk]);
}
int main(){
	//cout<<(1<<17);
	cin>>n;
	for(int i=1;i<=n;i++) cin>>s[i]; 
	RMQ();
	int q;
	cin>>q;
	while(q--){
		int l,r;
		cin>>l>>r;
		cout<<ask(l,r)<<endl;
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值