摘要
本文提出了一对生成器模型和分割模型,可以将一组未进行配对的数据集A和B进行互相转换,并在此过程中提高分割模型的性能。文中采用的数据集A为MRI图像,B为CT图像,利用总共4496张未配对的图像进行训练后,模型取得了SOTA。
方法
框架

本文方法主要分为两块,一部分为生成器模型训练,一部分为分割模型训练。生成器模型部分,有三个损失,一个是生成损失Adversial Loss,用于监督图像是否真实,一个是循环一致性损失Cycle-consistency Loss,让图像经过两个生成器的变换后尽可能和原图像一致,最后是形状一致性损失Shape-consistency Loss,由分割模型提供,让转换后的图像分割结果逼近转换前的分割结果。
分割模型部分的训练就比较简单,利用真实图像和生成图像基于交叉熵训练损失即可。
这四个损失中,由作者提出来的是两个一致性损失,因此主要介绍这两个损失。
循环一致性损失
这个损失很简单,经过两个生成器转换后的图像与原图像尺寸一致,因此将两幅图像上的每个像素点做差,取绝对值,最后再求这些绝对值的平均值即可(求平均是L1损失,作者这里提了一嘴说L1损失比L2损失表现更好)。
形状一致性损失
因为本文的生成器是生成一副图像对应的另一幅图像,而CT和MRI可以表示人体的同一部位。因此,生成图像和原有图像的病灶应该是完全一致的。因此,形状一致性损失是把真实图像的GT当作生成图像被

论文介绍了一种新型的生成器和分割模型,通过无配对MRI和CT数据转换,实现模型性能的增强。关键在于引入了循环一致性和形状一致性损失。实验结果显示,模型在SOTA上取得优异表现,且消融实验验证了这些损失的重要性及合成数据的有效性。
最低0.47元/天 解锁文章
762

被折叠的 条评论
为什么被折叠?



