粗读Robust Representation Learning via Perceptual Similarity Metrics

        

        本文的创新之处在于提出了变形网络(Transformation Network, TN),说是变形,但网络更多的类似于提取一副注意力图像,通过这个图象,找出图中重点,然后得到权值图m。将m与原始图像x相乘,便可得到强化后的,排除了外界干扰的图像。

        为了训练TN,引入了三元损失,通过比较m*x,正样本和负样本,优化TN参数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值