如何在Pytorch中使用GPU以及CUDA操作相关基本操作

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【车辆检测追踪与流量计数系统
49.【行人检测追踪与双向流量计数系统50.【基于YOLOv8深度学习的反光衣检测与预警系统
51.【危险区域人员闯入检测与报警系统52.【高密度人脸智能检测与统计系统
53.【CT扫描图像肾结石智能检测系统54.【水果智能检测系统
55.【水果质量好坏智能检测系统56.【蔬菜目标检测与识别系统
57.【非机动车驾驶员头盔检测系统58.【太阳能电池板检测与分析系统
59.【工业螺栓螺母检测60.【金属焊缝缺陷检测系统
61.【链条缺陷检测与识别系统62.【交通信号灯检测识别

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

CUDA(Compute Unified Device Architecture)是NVIDIA专有的并行计算平台和编程模型。使用CUDA SDK,开发人员可以利用他们的NVIDIA GPU(图形处理单元),从而使他们能够在通常的编程工作流程中引入基于GPU的并行处理能力,而不是通常的基于CPU的顺序处理能力。

随着近年来深度学习的兴起,可以看到模型训练中涉及的各种运算,如矩阵乘法,求逆等,可以在很大程度上并行化,以获得更好的学习性能和更快的训练周期。因此,许多像Pytorch这样的深度学习库使用户能够使用一组接口和实用程序函数来利用GPU。本文将介绍在任何包含支持CUDA的GPU的系统中设置CUDA环境,并简要介绍使用Python的Pytorch库中提供的各种CUDA操作。

查看GPU支持的CUDA版本

在cmd控制台输入navidia-smi查看GPU支持的最高CUDA版本:

在这里插入图片描述

如上图所示,最高支持的CUDA版本为12.5,版本可以向下兼容。因此安装的CUDA版本必须小于或者等于12.5版本。

安装GPU版Pytorch

首先,通过官方Nvidia CUDA兼容性列表检查其系统的GPU,以确保其GPU是否启用CUDA。Pytorch通过提供一个很好的用户友好界面,让您选择操作系统和其他要求,使CUDA安装过程非常简单,如下图所示。根据我们的计算机,我们将根据下图中给出的规格进行安装。

参考Pytorch的官方链接,根据他们的电脑规格选择规格。我们还建议在安装后完全重新启动系统,以确保工具包的正常工作。

img

Pytorch安装页面截图

pip3 install torch1.9.0+cu102 torchvision0.10.0+cu102 torchaudio=0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

在Pytorch中开始使用CUDA

安装后,我们可以使用torch.cuda接口使用Pytorch与CUDA交互。我们将使用以下函数:

语法:

  1. torch.version.cuda() :返回当前安装的软件包的CUDA版本
  2. torch.cuda.is_available():如果您的系统支持CUDA,则返回True,否则返回False
  3. torch.cuda.current_device():返回当前设备的ID
  4. torch.cuda.get_device_name(device_ID):返回ID = 'device_ID’的CUDA设备的名称

代码:

import torch

print(f"CUDA是否可用? {torch.cuda.is_available()}")
print(f"当前CUDA 版本: {torch.version.cuda}")

# Storing ID of current CUDA device
cuda_id = torch.cuda.current_device()
print(f"当前CUDA ID:{torch.cuda.current_device()}")

print(f"CUDA设备名称:{torch.cuda.get_device_name(cuda_id)}")

输出:
在这里插入图片描述

使用CUDA处理张量

为了通过CUDA交互Pytorch张量,我们可以使用以下实用函数:

语法:

  • tensor.device:返回“Tensor”所在的设备名称
  • Tensor.to(device_name):返回“device_name”指定的设备上的“Tensor”的新实例:“cpu”表示CPU,“cuda”表示支持CUDA的GPU
  • tensor.cpu():将“Tensor”从当前设备传输到CPU

为了演示上述函数,我们将创建一个测试张量并执行以下操作:

检查张量的当前设备并应用张量操作(平方),将张量传输到GPU并应用相同的张量操作(平方),并比较2个设备的结果。

代码:

import torch

# Creating a test tensor
x = torch.randint(1, 100, (100, 100))

# Checking the device name:
# Should return 'cpu' by default
print(x.device)

# Applying tensor operation
res_cpu = x ** 2

# Transferring tensor to GPU
x = x.to(torch.device('cuda'))

# Checking the device name:
# Should return 'cuda:0'
print(x.device)

# Applying same tensor operation
res_gpu = x ** 2

# Checking the equality
# of the two results
assert torch.equal(res_cpu, res_gpu.cpu())

输出:

cpu
cuda : 0

使用CUDA处理深度学习模型

一个好的Pytorch实践是生成与设备无关的代码,因为某些系统可能无法访问GPU,只能依赖CPU,反之亦然。完成后,可以使用以下函数将任何机器学习模型传输到所选设备上

**网址:**Model.to(device_name):

返回:“device_name”指定的设备上的机器学习“Model”的新实例:“cpu”表示CPU,“cuda”表示启用CUDA的GPU

在本例中,我们从torchvision.models实用程序导入预训练的Resnet-18模型,读者可以使用相同的步骤将模型传输到所选设备。

代码:

import torch
import torchvision.models as models

# Making the code device-agnostic
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Instantiating a pre-trained model
model = models.resnet18(pretrained=True)

# Transferring the model to a CUDA enabled GPU
model = model.to(device)

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值