【教程】RF-DETR:SOTA实时目标检测模型介绍与使用教程

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

模型概述

  • 发布时间:2025年3月20日
  • 作者:Peter Robicheaux, James Gallagher, Joseph Nelson, Isaac Robinson
  • 核心成就:RF DETR是首个在COCO数据集上实现超过60 mAP的实时模型,并且性能优于所有现有的目标检测模型。

性能与基准测试

在这里插入图片描述

  • 评估标准:COCO mAP,RF100 VL mAP及速度。

  • RF100 VL:从Roboflow Universe中的50多万个开源数据集中精选出的100个数据集,代表了计算机视觉在不同领域的实际应用情况。
    在这里插入图片描述

  • 比较对象:D-FINE、LW-DETR(实时COCO SOTA transformer模型)以及YOLO11和YOLOv8(SOTA YOLO CNN架构)。
    在这里插入图片描述

  • 结果:RF-DETR在所有类别中均位列第一或第二。

架构细节

在这里插入图片描述

  • 基础架构:基于Deformable DETR论文中的架构,但使用单一尺度的主干网络提取图像特征图。
  • 结合最佳实践:通过将LW DETR与预训练的DINOv2主干网络结合,提高了对新领域的适应能力。
  • 多分辨率训练:允许用户在运行时选择不同的分辨率以平衡准确性和延迟,而无需重新训练模型。

使用方法

安装

在 Python>=3.9 环境中安装 rfdetr 包。

pip install rfdetr

模型推理

官方提供了在COCO数据集上的预训练模型。

图片推理

import io
import requests
import supervision as sv
from PIL import Image
from rfdetr import RFDETRBase
from rfdetr.util.coco_classes import COCO_CLASSES

model = RFDETRBase()

url = "test1.jpg"

image = Image.open(io.BytesIO(requests.get(url).content))
detections = model.predict(image, threshold=0.5)

labels = [
    f"{COCO_CLASSES[class_id]} {confidence:.2f}"
    for class_id, confidence
    in zip(detections.class_id, detections.confidence)
]

annotated_image = image.copy()
annotated_image = sv.BoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels)

sv.plot_image(annotated_image)

视频推理

import supervision as sv
from rfdetr import RFDETRBase
from rfdetr.util.coco_classes import COCO_CLASSES

model = RFDETRBase()

def callback(frame, index):
    detections = model.predict(frame, threshold=0.5)
        
    labels = [
        f"{COCO_CLASSES[class_id]} {confidence:.2f}"
        for class_id, confidence
        in zip(detections.class_id, detections.confidence)
    ]

    annotated_frame = frame.copy()
    annotated_frame = sv.BoxAnnotator().annotate(annotated_frame, detections)
    annotated_frame = sv.LabelAnnotator().annotate(annotated_frame, detections, labels)
    return annotated_frame

process_video(
    source_path=<SOURCE_VIDEO_PATH>,
    target_path=<TARGET_VIDEO_PATH>,
    callback=callback
)

摄像头推理

import cv2
import supervision as sv
from rfdetr import RFDETRBase
from rfdetr.util.coco_classes import COCO_CLASSES

model = RFDETRBase()

cap = cv2.VideoCapture(0)
while True:
    success, frame = cap.read()
    if not success:
        break

    detections = model.predict(frame, threshold=0.5)
    
    labels = [
        f"{COCO_CLASSES[class_id]} {confidence:.2f}"
        for class_id, confidence
        in zip(detections.class_id, detections.confidence)
    ]

    annotated_frame = frame.copy()
    annotated_frame = sv.BoxAnnotator().annotate(annotated_frame, detections)
    annotated_frame = sv.LabelAnnotator().annotate(annotated_frame, detections, labels)

    cv2.imshow("Webcam", annotated_frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

在这里插入图片描述

模型变体

RF-DETR 有两种型号:RFDETRBase 和 RFDETRLarge。初始化任一类时,会自动加载相应的 COCO 预训练模型。

输入分辨率

两种型号都支持可修改的输入分辨率。较高的分辨率通常会通过捕获更多细节来提高预测质量,但它可能会减慢推理速度。在初始化模型时,可以通过传递 resolution 参数来调整分辨率。 分辨率值必须能被 56 整除。

model = RFDETRBase(resolution=560)

模型训练

数据集结构

RF-DETR 期望数据集为 COCO 格式。将数据集分为三个子目录:train、valid 和 test。每个子目录都应该包含自己的 _annotations.coco.json 文件,该文件包含该特定分割的注释以及相应的图像文件沿着。下面是一个目录结构的例子:

dataset/
├── train/
│   ├── _annotations.coco.json
│   ├── image1.jpg
│   ├── image2.jpg
│   └── ... (other image files)
├── valid/
│   ├── _annotations.coco.json
│   ├── image1.jpg
│   ├── image2.jpg
│   └── ... (other image files)
└── test/
    ├── _annotations.coco.json
    ├── image1.jpg
    ├── image2.jpg
    └── ... (other image files)

模型训练

可以从预训练的 COCO 模型微调 RF-DETR。默认情况下,将使用 RF-DETR-B 模型。

from rfdetr import RFDETRBase,RFDETRLarge
model = RFDETRBase()
# model = RFDETRLarge()
model.train(dataset_dir=<DATASET_PATH>, epochs=10, batch_size=4, grad_accum_steps=4, lr=1e-4, output_dir=<OUTPUT_PATH>)

使用微调模型推理

from rfdetr import RFDETRBase
model = RFDETRBase(pretrain_weights=<CHECKPOINT_PATH>)
detections = model.predict(<IMAGE_PATH>)

导出ONNX格式

RF-DETR 支持将模型导出为 ONNX 格式,从而实现与各种推理框架的互操作性,并可以提高部署效率。要导出模型,只需初始化模型并调用 .export() 方法。

from rfdetr import RFDETRBase
model = RFDETRBase()
model.export()

此命令将 ONNX 模型保存到输出目录。

参考

代码地址:https://github.com/roboflow/rf-detr


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值