【教程】如何使用Labelimg查看已经标注好的YOLO数据集标注情况

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

这篇文章主要介绍一下如何使用LabelImg查看已经标注好的YOLO数据集标注情况,主要涉及LabelImg安装与运行、查看数据集标注文件。希望对各位小伙伴有帮助。

1. 安装并运行Labelimg

安装Labelimg

首先,使用anaconda创建一个虚拟环境yololabel,命令如下:

conda create -n yololabel python=3.9

在这里插入图片描述

然后激活虚拟环境:

conda activate yololabel

在这里插入图片描述
安装labelimg ,命令如下,等待安装完成:

pip install labelimg==1.8.6 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

运行Labelimg

安装完成后,直接在控制台窗口输入labelimg,即可打开标注工具的界面窗口,如下:
在这里插入图片描述
在这里插入图片描述

2. 查看数据集标注情况

创建类别名称文件classes.txt

我的数据集目录结构如下,分为训练集train与验证集val两个目录,其中images存储的是图像文件,labels存储图片对应的标签文件。
在这里插入图片描述
我们需要创建一个classes.txt文件,写入我们数据集标注的所有类别名称,供labelimg自动读取【如果没有这个文件的话会报错】。数据集的具体类别名称可以在datasets/GrapeData/data.yaml中查看:
在这里插入图片描述

我这个里写入的classes.txt内容如下:
在这里插入图片描述

这里只有一个葡萄类别,所以只有一行,如果有多个类别的话,写多行就行,每一行写一个类别名称。

创建完classes.txt文件后,将其分别放入训练集与验证集的labels标签目录下,如下所示:
在这里插入图片描述

使用Labelimg打开查看标注文件

点击Open Dir打开需要查看的标注图片文件夹,我这里选择train/images文件夹查看训练集的图片。
在这里插入图片描述

这里以查看训练集标注情况为例。选择train/images文件夹后,会有一个新的文件选择框,让你选择标注文件保存的文件夹。这里直接选择train/labels,即训练集图片对应的标签文件。
在这里插入图片描述
然后,点击右下角的列表或者软件左侧的上一张图片与下一张按钮,即可查看每张图片的标注情况。也可以对已经标注好的检测框进行修改或者删除,或者添加新的检测框,保存即可,标签文件会自动对应修改。
在这里插入图片描述

总结

这篇文章主要介绍了如何使用LabelImg查看已经标注好的YOLO数据集。希望能给各位小伙伴带来帮助,感谢大家的点赞支持!


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

### LabelImgYOLO结合使用的操作指南 #### 安装LabelImg 为了能够顺利使用LabelImg进行图像标注,首先需要按照官方文档中的说明来安装该软件。可以通过源码编译的方式或者利用预构建的二进制文件来进行安装[^1]。 #### 设置保存格式为YOLO 当启动LabelImg之后,在菜单栏中选择`Preferences`选项,找到`Save/Load`部分下的`Format`设置项,将其更改为`YOLO`模式。这样做的目的是为了让所创建的数据集可以直接被YOLO框架读取和训练[^2]。 #### 创建标签列表 在开始标注之前,还需要准备一份包含所有类别名称的文字档(通常命名为`classes.txt`),每行记录一类物体的名字。这份清单对于后续生成YOLO所需的配置文件至关重要。 #### 开始标注过程 打开待处理的照片或视频帧序列,点击界面上方工具条里的矩形框按钮进入绘制状态;拖动鼠标围绕感兴趣区域画出边界框,并指定对应的类名。重复此动作直至完成整张图上的对象标记工作。 #### 导出标注成果 一旦完成了单幅或多幅影像内的实体识别作业,则可通过File-> "Save" 功能把当前进度存储下来。此时会自动生成一系列txt格式的小文件夹存放在设定好的路径下,里面包含了各目标的位置坐标信息以及所属种类编号等细节描述。 ```bash # 示例命令用于导出标注结果到特定目录 $ labelimg --save-dir ./annotations/ ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值