《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
引言
这篇文章主要介绍一下如何使用LabelImg查看已经标注好的YOLO数据集标注情况,主要涉及LabelImg安装与运行、查看数据集标注文件。希望对各位小伙伴有帮助。
1. 安装并运行Labelimg
安装Labelimg
首先,使用anaconda创建一个虚拟环境yololabel
,命令如下:
conda create -n yololabel python=3.9
然后激活虚拟环境:
conda activate yololabel
安装labelimg ,命令如下,等待安装完成:
pip install labelimg==1.8.6 -i https://pypi.tuna.tsinghua.edu.cn/simple
运行Labelimg
安装完成后,直接在控制台窗口输入labelimg
,即可打开标注工具的界面窗口,如下:
2. 查看数据集标注情况
创建类别名称文件classes.txt
我的数据集目录结构如下,分为训练集train与验证集val两个目录,其中images存储的是图像文件,labels存储图片对应的标签文件。
我们需要创建一个classes.txt
文件,写入我们数据集标注的所有类别名称,供labelimg自动读取【如果没有这个文件的话会报错】。数据集的具体类别名称可以在datasets/GrapeData/data.yaml
中查看:
我这个里写入的classes.txt
内容如下:
这里只有一个葡萄类别,所以只有一行,如果有多个类别的话,写多行就行,每一行写一个类别名称。
创建完classes.txt
文件后,将其分别放入训练集与验证集的labels标签目录下,如下所示:
使用Labelimg打开查看标注文件
点击Open Dir
打开需要查看的标注图片文件夹,我这里选择train/images
文件夹查看训练集的图片。
这里以查看训练集标注情况为例。选择train/images
文件夹后,会有一个新的文件选择框,让你选择标注文件保存的文件夹。这里直接选择train/labels
,即训练集图片对应的标签文件。
然后,点击右下角的列表或者软件左侧的上一张图片与下一张按钮,即可查看每张图片的标注情况。也可以对已经标注好的检测框进行修改或者删除,或者添加新的检测框,保存即可,标签文件会自动对应修改。
总结
这篇文章主要介绍了如何使用LabelImg查看已经标注好的YOLO数据集。希望能给各位小伙伴带来帮助,感谢大家的点赞支持!
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!