SE模块的理解

本文详细介绍了SE模块中的Squeeze和Excitation步骤,Squeeze通过全局平均池化压缩特征,Excitation则利用两个全连接层学习通道注意力。这两个全连接层构成的bottleneck结构,用于减少计算量并提升模型表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前对SE模块的两个全连接层的作用和设置有疑问,于是和实验室同学讨论学习了一下,以下是我自己的理解,如果有不准确的地方请批评指正。

1、压缩(Squeeze)

进行的操作是 全局平均池化(global average pooling)
特征图被压缩为1×1×C向量666

2、激励(Excitation)

两个全连接层。
两个FC组成一个可训练的函数,用来学习通道注意力。(所以FC激活函数不是线性的就行)

两个FC构成了bottleneck结构:(SERatio是一个缩放参数)
第一个FC把神经元数量减少了 1. 除去冗余信息 2. 降低计算量
第二个FC的作用就是恢复到1×1×C尺寸。
(分割的Unet把尺寸越整越小就是在把那些纹理什么信息都取掉,只留下边界信息,之后再把尺寸回到原来的大小)
在这里插入图片描述

在这里插入图片描述
上图来自: https://blog.csdn.net/qq_34923437/article/details/106126432

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值