有两种方法可以指定gpu数目运行,第一种进入ubuntu虚拟环境后在终端使用EXPORT CUDA_VISIBLE_DEVICES=[你想要训练的GPU序号],可以通过nvidia-smi来查看空闲的GPU序号,同时如果batch_size设置过大,会导致发生cuda out of memory的报错,这个时候通过新建一个窗口输入watch -n 5 nvidia-smi,即每隔5s刷新GPU使用状态,来观察是否有被调用GPU的行为发生,另一种方法即是在程序中模型加载前使用import os os.environ["CUDA_VISIBLE_DEVICES"] = "2"
指定你想要训练GPU的序号即可。
pytorch nn.DataParallel指定多GPU运行
最新推荐文章于 2022-10-10 19:09:39 发布