pytorch nn.DataParallel指定多GPU运行

有两种方法可以指定gpu数目运行,第一种进入ubuntu虚拟环境后在终端使用EXPORT CUDA_VISIBLE_DEVICES=[你想要训练的GPU序号],可以通过nvidia-smi来查看空闲的GPU序号,同时如果batch_size设置过大,会导致发生cuda out of memory的报错,这个时候通过新建一个窗口输入watch -n 5 nvidia-smi,即每隔5s刷新GPU使用状态,来观察是否有被调用GPU的行为发生,另一种方法即是在程序中模型加载前使用import os os.environ["CUDA_VISIBLE_DEVICES"] = "2"指定你想要训练GPU的序号即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值