AM-GM不等式

AM-GM 即算术平均数和几何平均数不等式

在高中,我们研究了其 n = 2 n=2 n=2 的情况
a b ≤ a + b 2 , a , b ≥ 0 \sqrt {ab} \le \frac {a + b} 2, a, b \ge 0 ab 2a+b,a,b0
完整的不等式表述如下
( ∏ i = 1 n a i ) 1 n ≤ ∑ i = 1 n a i n , a i ≥ 0 (\prod _{i = 1} ^ n a_i) ^ {\frac 1 n} \le \frac {\sum_{i = 1} ^ n a_i} n,a_i\ge0 (i=1nai)n1ni=1nai,ai0
其最经典的证明为反向归纳法

Proof . 我们记命题函数 P ( n ) P(n) P(n) P ( n ) P(n) P(n) 为真表示 n n n 满足上述不等式,为假表示不满足.

(1) 考虑 P ( n = 2 k ) , k ∈ N P(n= 2 ^ k), k \in \N P(n=2k),kN , 我们利用二元情况正向归纳

假设原问题对 n 0 = 2 k 0 , k 0 < k ∈ N n_0 = 2 ^ {k_0}, k_0 < k \in \N n0=2k0,k0<kN 成立, 显然 k 0 = 0 , 1 k_0 = 0, 1 k0=0,1 必然成立

n = 2 k 0 + 1 n=2 ^{k_0+1} n=2k0+1,我们有
( ∏ i = 1 n a i ) 1 n = ( a 1 . . a n 2 ) 1 n ( a n 2 + 1 . . a n ) 1 n = ( a 1 . . a n 2 ) 2 n ( a n 2 + 1 . . a n ) 2 n ≤ ∑ i = 1 n 2 a i n 2 ∑ i = n 2 + 1 n a i n 2 = 4 n 2 ( ∑ i = 1 n 2 a i ) ( ∑ i = n 2 + 1 n a i ) ≤ 2 n ∑ i = 1 n a i 2 = ∑ i = 1 n a i n (\prod _{i = 1} ^ n a_i) ^ {\frac 1 n} = (a_1 .. a_{\frac n 2})^ \frac 1 n (a_{\frac n 2 + 1} .. a_n)^ \frac 1 n = \sqrt {(a_1 .. a_{\frac n 2})^ \frac 2 n (a_{\frac n 2 + 1} .. a_n)^ \frac 2 n} \\ \le \sqrt{\frac {\sum_{i = 1} ^ {\frac n 2} a_i} {\frac n 2} \frac {\sum_{i = \frac n 2 + 1} ^ n a_i} {\frac n 2}}= \sqrt{\frac 4 {n ^ 2} \textcolor {blue}{(\sum_{i = 1} ^ {\frac n 2 } a_i ) (\sum_{i = \frac n 2 + 1} ^ n a_i)} }\\ \le \frac 2 {n }\textcolor {blue} {\frac {\sum_{i = 1} ^ n a_i} {2}} = \frac {\sum_{i = 1} ^ n a_i} n (i=1nai)n1=(a1..a2n)n1(a2n+1..an)n1=(a1..a2n)n2(a2n+1..an)n2 2ni=12nai2ni=2n+1nai =n24(i=12nai)(i=2n+1nai) n22i=1nai=ni=1nai
故 (1) 情况成立

(2) 考虑 P ( n = 2 k + r ) , 1 ≤ r < 2 k P(n = 2 ^ k + r), 1\le r < 2 ^ k P(n=2k+r),1r<2k,我们考虑 k k k 所对应的 r r r 的取值集合

不妨设 k = k 0 k = k_0 k=k0 r ∈ { 1 , 2 , . . , 2 k 0 − 1 } r \in \{1, 2, .. , 2 ^ {k_0} - 1\} r{1,2,..,2k01}

我们考虑对数列 a 作一个补充 a 1 , a 2 , . . a r → a 1 , a 2 , . . . , a r , α 1 , . . . , α 2 k 0 − r a_1 , a_2, .. a_r \to a_1, a_2, ..., a_r, \alpha_1, ..., \alpha_{2 ^ {k_0} - r} a1,a2,..ara1,a2,...,ar,α1,...,α2k0r 使得新数列满足长度为 2 的幂次

其中 α n = ∑ i = 1 r a i r , n ∈ [ 1 , 2 k 0 − r ] \alpha_n = \frac {\sum_{i = 1} ^ r a_{i}} r, n \in [1, 2 ^ {k_0} - r] αn=ri=1rai,n[1,2k0r],则对新数列,我们记 t = 2 k 0 t = 2 ^ {k_0} t=2k0 ,有
( ∏ i = 1 t a i ) 1 t = ( a 1 a 2 . . a r ) 1 t α t − r t ≤ 1 t ∑ i = 1 t a i = 1 t ( t α ) = α \textcolor {blue} {(\prod _{i = 1} ^ t a_i) ^ {\frac 1 t}} = ({a_1a_2 .. a_{r}}) ^ {\frac 1 t} {\alpha ^ {\frac {t-r} t}}\\ \le \textcolor {blue} {\frac 1 t\sum_{i = 1} ^ t a_i} = \frac 1 t (t \alpha) = \alpha (i=1tai)t1=(a1a2..ar)t1αttrt1i=1tai=t1(tα)=α
化简即得 P ( r ) P(r) P(r) 成立,故 (2) 情况成立,故对任意正整数 n n n 均有 P ( n ) P(n) P(n) 成立


拓展
∏ i = 1 n a i p i ≤ ∑ i = 1 n p i a i \prod_{i = 1} ^ n a_i^{p_i} \le \sum_{i = 1} ^ n p_i a_i i=1naipii=1npiai
其中 a i , p i ≥ 0 , ∑ i = 1 n p i = 1 a_i, p_i \ge 0, \sum_{i = 1} ^ np_i = 1 ai,pi0,i=1npi=1


练习:

(sdu 2023-2024 A) 若 a , b , c > 0 a, b, c > 0 a,b,c>0 , 试证明下式
a b c 3 ≤ 27 ( a + b + c 5 ) 5 abc^3 \le 27(\frac {a + b + c} 5) ^ 5 abc327(5a+b+c)5
Proof.
a b c 3 = 27 a b ( 1 3 c ) ( 1 3 c ) ( 1 3 c ) ≤ 27 ( a + b + 1 3 c + 1 3 c + 1 3 c 5 ) 5 = 27 ( a + b + c 5 ) 5 abc^3 = 27\textcolor {blue}{ab (\frac 1 3 c) (\frac 1 3 c) (\frac 1 3 c)} \\ \le 27 (\frac {a + b + \frac 1 3 c + \frac 1 3 c + \frac 1 3 c} 5) ^ 5\\ =27(\frac {a + b + c} 5) ^ 5 abc3=27ab(31c)(31c)(31c)27(5a+b+31c+31c+31c)5=27(5a+b+c)5
更一般的 ,对 x , y , z ∈ Z + x, y, z\in \Z^+ x,y,zZ+
a x b y c z = x x y y z z ( 1 x a ) x ( 1 y b ) y ( 1 z c ) z ≤ x x y y z z ( a + b + c x + y + z ) x + y + z a^xb^yc^z = x^xy^yz^z (\frac 1 x a)^x(\frac 1 y b) ^ y(\frac 1 z c) ^ z \\ \le x^xy^yz^z(\frac {a + b + c} {x + y + z}) ^ {x + y + z} axbycz=xxyyzz(x1a)x(y1b)y(z1c)zxxyyzz(x+y+za+b+c)x+y+z

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值