AM-GM 即算术平均数和几何平均数不等式
在高中,我们研究了其 n = 2 n=2 n=2 的情况
a b ≤ a + b 2 , a , b ≥ 0 \sqrt {ab} \le \frac {a + b} 2, a, b \ge 0 ab≤2a+b,a,b≥0
完整的不等式表述如下
( ∏ i = 1 n a i ) 1 n ≤ ∑ i = 1 n a i n , a i ≥ 0 (\prod _{i = 1} ^ n a_i) ^ {\frac 1 n} \le \frac {\sum_{i = 1} ^ n a_i} n,a_i\ge0 (i=1∏nai)n1≤n∑i=1nai,ai≥0
其最经典的证明为反向归纳法
Proof . 我们记命题函数 P ( n ) P(n) P(n) , P ( n ) P(n) P(n) 为真表示 n n n 满足上述不等式,为假表示不满足.
(1) 考虑 P ( n = 2 k ) , k ∈ N P(n= 2 ^ k), k \in \N P(n=2k),k∈N , 我们利用二元情况正向归纳
假设原问题对 n 0 = 2 k 0 , k 0 < k ∈ N n_0 = 2 ^ {k_0}, k_0 < k \in \N n0=2k0,k0<k∈N 成立, 显然 k 0 = 0 , 1 k_0 = 0, 1 k0=0,1 必然成立
对 n = 2 k 0 + 1 n=2 ^{k_0+1} n=2k0+1,我们有
( ∏ i = 1 n a i ) 1 n = ( a 1 . . a n 2 ) 1 n ( a n 2 + 1 . . a n ) 1 n = ( a 1 . . a n 2 ) 2 n ( a n 2 + 1 . . a n ) 2 n ≤ ∑ i = 1 n 2 a i n 2 ∑ i = n 2 + 1 n a i n 2 = 4 n 2 ( ∑ i = 1 n 2 a i ) ( ∑ i = n 2 + 1 n a i ) ≤ 2 n ∑ i = 1 n a i 2 = ∑ i = 1 n a i n (\prod _{i = 1} ^ n a_i) ^ {\frac 1 n} = (a_1 .. a_{\frac n 2})^ \frac 1 n (a_{\frac n 2 + 1} .. a_n)^ \frac 1 n = \sqrt {(a_1 .. a_{\frac n 2})^ \frac 2 n (a_{\frac n 2 + 1} .. a_n)^ \frac 2 n} \\ \le \sqrt{\frac {\sum_{i = 1} ^ {\frac n 2} a_i} {\frac n 2} \frac {\sum_{i = \frac n 2 + 1} ^ n a_i} {\frac n 2}}= \sqrt{\frac 4 {n ^ 2} \textcolor {blue}{(\sum_{i = 1} ^ {\frac n 2 } a_i ) (\sum_{i = \frac n 2 + 1} ^ n a_i)} }\\ \le \frac 2 {n }\textcolor {blue} {\frac {\sum_{i = 1} ^ n a_i} {2}} = \frac {\sum_{i = 1} ^ n a_i} n (i=1∏na