【RCNN系列】Faster RCNN

Faster RCNN是Fast RCNN的改进版,通过引入区域提案网络(RPN)取代选择性搜索,提高了目标检测的速度。RPN在特征图上预测物体置信度和坐标偏移,经过NMS处理后与主网络共享特征,通过ROI池化进行目标检测。该模型实现了两阶段检测,但训练仍分为两个部分。
摘要由CSDN通过智能技术生成

⭐ Faster RCNN

参考文献:《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(2016)》

Fast RCNN的改进版本,用RPN代替了选择性搜索(提出候选区),使网络运行更快。


✔️诞生背景

继Fast RCNN后,在CPU上的生成候选区域模块(SS)成了目标检测速度提升的最大瓶颈。SS在CPU上通过低级特征提出ROI,能不能利用在GPU上CNN提的特征来提出ROI?

✔️网络结构
在这里插入图片描述

如上所示,就是将Fast RCNN中的selective search替换成了RPN,并和主网络形成一个统一的模块。

RPN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值