【YOLO系列】YOLOv3

YOLOv3是YOLO系列的第三个版本,基于YOLOv2进行了改进。它采用了Darknet-53作为特征提取器,使用了锚框方法和跨尺度预测来提高目标检测的性能。网络结构中,类别预测使用独立的逻辑分类器,避免了softmax。尽管进行了多次尝试,如尝试不同的激活函数和损失函数,但作者发现某些改变并未带来性能提升。YOLOv3的主要贡献在于速度和精度的提升,并引入了新网络结构和优化的损失函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⭐ YOLOv3

参考文献:《YOLOv3: An incremental improvement(2018)》

YOLO系列的第三个版本,在YOLOv2基础上做了一些小改进,文章篇幅不长,核心思想和YOLOv2差不多。


✔️诞生背景

YOLOv3的提出并不是为了解决什么问题,整篇论文其实是份技术报告。

✔️网络结构

边框预测,定位任务采用锚框方法,框中心是相对于左上角grid_cell的位置,sigmoid归一化0~1;框宽高是相对于聚类先验框中心的偏移。使用平方误差之和的损失。用逻辑回归为每个box都预测一个目标存在分数,依据是预测框与物体的重叠度,若某个框重叠度比其他框都高,他的分数就是1,忽略那些不是最好的框且重叠度大于某一阈值(0.5)的框。

类别预测,不用softmax没必要,只用独立的逻辑分类器,使用二进制交叉熵损失,每个类别概率相互独立。

跨尺度预测,3个不同尺度共

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值