⭐ YOLOv3
参考文献:《YOLOv3: An incremental improvement(2018)》
YOLO系列的第三个版本,在YOLOv2基础上做了一些小改进,文章篇幅不长,核心思想和YOLOv2差不多。
✔️诞生背景
YOLOv3的提出并不是为了解决什么问题,整篇论文其实是份技术报告。
✔️网络结构
边框预测,定位任务采用锚框方法,框中心是相对于左上角grid_cell的位置,sigmoid归一化0~1;框宽高是相对于聚类先验框中心的偏移。使用平方误差之和的损失。用逻辑回归为每个box都预测一个目标存在分数,依据是预测框与物体的重叠度,若某个框重叠度比其他框都高,他的分数就是1,忽略那些不是最好的框且重叠度大于某一阈值(0.5)的框。
类别预测,不用softmax没必要,只用独立的逻辑分类器,使用二进制交叉熵损失,每个类别概率相互独立。
跨尺度预测,3个不同尺度共