特征值分解、SVD分解在线性最小二乘解上的应用

1. 奇异值分解(SVD)原理

1.1 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:
A x = λ x Ax=λx Ax=λx其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n λ_1≤λ_2≤...≤λ_n λ1λ2...λn,以及这n个特征值所对应的特征向量 w 1 , w 2 , . . . , w n w_1,w_2,...,w_n w1,w2,...,wn,如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:
A = W Σ W − 1 A=WΣW^{−1} A=WΣW1其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。一般我们会把W的这n个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 ||wi||^2=1 ∣∣wi2=1, 或者说 w i T w i = 1 w^T_iw_i=1 wiTwi=1,此时W的n个特征向量为标准正交基,满足 W T W = I W^TW=I WTW=I,即 W T = W − 1 W^T=W^{−1} WT=W1, 也就是说W为酉矩阵。

这样我们的特征分解表达式可以写成
A = W Σ W T A=WΣW^T A=WΣWT注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

1.2 SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
A = U Σ V T A=UΣV_T A=UΣVT其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足 U T U = I U^TU=I UTU=I, V T V = I V^TV=I VTV=I。下图可以很形象的看出上面SVD的定义:

在这里插入图片描述

1.3 求出SVD分解后的U,Σ,V矩阵

如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 A T A A^TA ATA。既然 A T A A^TA ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A T A ) v i = λ i v i (A^TA)v_i=λ_iv_i (ATA)vi=λivi这样我们就可以得到矩阵 A T A A^TA ATA的n个特征值和对应的n个特征向量v了。将 A T A A^TA ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量

如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 A A T AA^T AAT。既然 A A T AA^T AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A A T ) u i = λ i u i (AA^T)u_i=λ_iu_i (AAT)ui=λiui这样我们就可以得到矩阵 A A T AA^T AAT的m个特征值和对应的m个特征向量u了。将 A A T AA^T AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量

U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

我们注意到:
A = U Σ V T ⇒ A V = U Σ V T V ⇒ A V = U Σ ⇒ A v i = σ i u i ⇒ σ i = A v i / u i A=UΣV^T⇒AV=UΣV^TV⇒AV=UΣ⇒Av_i=σ_iu_i⇒σ_i=Av_i/u_i A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

上面还有一个问题没有讲,就是我们说 A T A A^TA ATA的特征向量组成的就是我们SVD中的V矩阵,而 A A T AA^T AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。
A = U Σ V T ⇒ A T = V Σ T U T ⇒ A T A = V Σ T U T U Σ V T = V Σ 2 V T A=UΣV^T⇒A^T=VΣ^TU^T⇒A^TA=VΣ^TU^TUΣV^T=VΣ^2V^T A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT上式证明使用了: U T U = I , Σ T Σ = Σ 2 U^TU=I,Σ^TΣ=Σ^2 UTU=I,ΣTΣ=Σ2

可以看出 A T A A^TA ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 A A T AA^T AAT的特征向量组成的就是我们SVD中的U矩阵。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ i = λ i σ_i=\sqrt{λ_i} σi=λi 这样也就是说,我们可以不用 σ i = A v i / u i σ_i=Av_i/u_i σi=Avi/ui来计算奇异值,也可以通过求出 A T A A^TA ATA或者 A A T AA^T AAT的特征值取平方根来求奇异值。

1.4 SVD计算举例

在这里插入图片描述

1.5 SVD的一些性质

在这里插入图片描述

1.6 SVD用于PCA

在这里插入图片描述

2. 线性最小二乘问题

2.1 线性方程组Ax=0的求解方法

2.1.1 代数消元

在这里插入图片描述
在这里插入图片描述

2.1.2 特征值分解与最小二乘解

在这里插入图片描述

2.1.3 SVD分解与最小二乘解

在这里插入图片描述

2.2 线性方程组Ax=b的求解方法

2.2.1 代数消元

参考:
8. MIT线性代数—Ax = b的解讨论

2.2.2 SVD分解与最小二乘解

在这里插入图片描述

参考

  1. 奇异值分解(SVD)方法求解最小二乘问题的原理
  2. 【代数之美】线性方程组Ax=0的求解方法
  3. SVD的应用:求解Ax=b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值