1. 奇异值分解(SVD)原理
1.1 回顾特征值和特征向量
我们首先回顾下特征值和特征向量的定义如下:
A
x
=
λ
x
Ax=λx
Ax=λx其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。
求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值
λ
1
≤
λ
2
≤
.
.
.
≤
λ
n
λ_1≤λ_2≤...≤λ_n
λ1≤λ2≤...≤λn,以及这n个特征值所对应的特征向量
w
1
,
w
2
,
.
.
.
,
w
n
w_1,w_2,...,w_n
w1,w2,...,wn,如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:
A
=
W
Σ
W
−
1
A=WΣW^{−1}
A=WΣW−1其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。一般我们会把W的这n个特征向量标准化,即满足
∣
∣
w
i
∣
∣
2
=
1
||wi||^2=1
∣∣wi∣∣2=1, 或者说
w
i
T
w
i
=
1
w^T_iw_i=1
wiTwi=1,此时W的n个特征向量为标准正交基,满足
W
T
W
=
I
W^TW=I
WTW=I,即
W
T
=
W
−
1
W^T=W^{−1}
WT=W−1, 也就是说W为酉矩阵。
这样我们的特征分解表达式可以写成
A
=
W
Σ
W
T
A=WΣW^T
A=WΣWT注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。
1.2 SVD的定义
SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
A
=
U
Σ
V
T
A=UΣV_T
A=UΣVT其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足
U
T
U
=
I
U^TU=I
UTU=I,
V
T
V
=
I
V^TV=I
VTV=I。下图可以很形象的看出上面SVD的定义:
1.3 求出SVD分解后的U,Σ,V矩阵
如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵
A
T
A
A^TA
ATA。既然
A
T
A
A^TA
ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(
A
T
A
)
v
i
=
λ
i
v
i
(A^TA)v_i=λ_iv_i
(ATA)vi=λivi这样我们就可以得到矩阵
A
T
A
A^TA
ATA的n个特征值和对应的n个特征向量v了。将
A
T
A
A^TA
ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵
了。一般我们将V中的每个特征向量叫做A的右奇异向量
。
如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵
A
A
T
AA^T
AAT。既然
A
A
T
AA^T
AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(
A
A
T
)
u
i
=
λ
i
u
i
(AA^T)u_i=λ_iu_i
(AAT)ui=λiui这样我们就可以得到矩阵
A
A
T
AA^T
AAT的m个特征值和对应的m个特征向量u了。将
A
A
T
AA^T
AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵
了。一般我们将U中的每个特征向量叫做A的左奇异向量
。
U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。
我们注意到:
A
=
U
Σ
V
T
⇒
A
V
=
U
Σ
V
T
V
⇒
A
V
=
U
Σ
⇒
A
v
i
=
σ
i
u
i
⇒
σ
i
=
A
v
i
/
u
i
A=UΣV^T⇒AV=UΣV^TV⇒AV=UΣ⇒Av_i=σ_iu_i⇒σ_i=Av_i/u_i
A=UΣVT⇒AV=UΣVTV⇒AV=UΣ⇒Avi=σiui⇒σi=Avi/ui这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。
上面还有一个问题没有讲,就是我们说
A
T
A
A^TA
ATA的特征向量组成的就是我们SVD中的V矩阵,而
A
A
T
AA^T
AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。
A
=
U
Σ
V
T
⇒
A
T
=
V
Σ
T
U
T
⇒
A
T
A
=
V
Σ
T
U
T
U
Σ
V
T
=
V
Σ
2
V
T
A=UΣV^T⇒A^T=VΣ^TU^T⇒A^TA=VΣ^TU^TUΣV^T=VΣ^2V^T
A=UΣVT⇒AT=VΣTUT⇒ATA=VΣTUTUΣVT=VΣ2VT上式证明使用了:
U
T
U
=
I
,
Σ
T
Σ
=
Σ
2
U^TU=I,Σ^TΣ=Σ^2
UTU=I,ΣTΣ=Σ2。
可以看出 A T A A^TA ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 A A T AA^T AAT的特征向量组成的就是我们SVD中的U矩阵。
进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ
i
=
λ
i
σ_i=\sqrt{λ_i}
σi=λi这样也就是说,我们可以不用
σ
i
=
A
v
i
/
u
i
σ_i=Av_i/u_i
σi=Avi/ui来计算奇异值,也可以通过求出
A
T
A
A^TA
ATA或者
A
A
T
AA^T
AAT的特征值取平方根来求奇异值。
1.4 SVD计算举例
1.5 SVD的一些性质
1.6 SVD用于PCA
2. 线性最小二乘问题
2.1 线性方程组Ax=0的求解方法
2.1.1 代数消元