点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
01. 简介
焊接缺陷是指焊接零件表面出现不规则、不连续的现象。焊接接头的缺陷可能会导致组件报废、维修成本高昂,在工作条件下的组件的性能显着下降,在极端情况下还会导致灾难性故障,并造成财产和生命损失。此外,由于焊接技术固有的弱点和金属特性,在焊接中总是存在某些缺陷。不可能获得完美的焊接,因此评估焊接质量非常重要。
可以通过图像来检测焊接中的缺陷,并精确测量每个缺陷的严重性,这将有助于并避免上述危险情况的出现。使用卷积神经网络算法和U-Net架构可提高检测的效率,精度也能达到98.3%。
02. 图像分割
图像分割是指将图像划分为包含相似属性的不同像素区域。为了对图像分析和解释,划分的区域应与对象特征密切相关。图像分析的成功取决于分割的可靠性,但是图像的正确分割通常是一个非常具有挑战性的问题。
对心脏(红色),肺部(绿色)和锁骨(蓝色)的胸部X光进行了分割
03. 图像中心距
图像中心距是图像像素强度的某个特定加权平均值。图像矩可用于描述分割后的对象。通过图像瞬间发现的图像简单属性包括:
面积(或总强度)
质心
有关其方向的信息
04. 数据
该数据集包含两个目录。原始图像存储在“图像”目录中,分割后的图像存储在“标签”目录中。让我们来看看这些数据:原始图像是RGB图像,用于训练模型和测试模型。这些图片的尺寸各不相同。直观地,较暗的部分是焊接缺陷。模型需要对这些图像执行图像分割。
来自“图像”的原始图像
“标签”目录的图像是二进制图像或地面真相标签。这是我们的模型必须针对给定的原始图像进行预测。在二进制图像中,像素具有“高”值或“低”值。白色区域或“高”值表示缺陷区域,而黑色区域或“低”值表示无缺陷。
来自“标签”的二进制图像
05. 算法
我们将使用U-Net来解决这个问题,通过以下三个主要步骤来检测缺陷及其严重性:
图像分割
使用颜色显示严重性
使用图像矩测量严重性
训练模型
使用的U-Net架构
注意事项:
每个蓝色框对应一个多通道特征图
通道数显示在框的顶部。
(x,y)尺寸位于框的左下边缘。
箭头表示不同的操作。
图