点击上方“深度学习爱好者”,选择加"星标"或“置顶”
重磅干货,第一时间送达
小白导读论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要
学习捕捉空间位置之间的依赖关系对于许多视觉任务是至关重要的,特别是像场景解析这样的密集标记问题。现有的方法可以有效地利用自我注意机制捕获长期依赖,而通过局部卷积捕获短期依赖。然而,长期依赖与短期依赖之间仍存在很大的差距,这极大地降低了模型在复杂自然场景图像中适用于不同空间尺度和关系的灵活性。为了填补这一空白,作者开发了一个中程(MR)分支,通过将自己的注意力限制在局部补丁中来捕获中程依赖关系。此外,作者观察到,可以强调与其他区域有较大相关性的空间区域,从而更准确地利用长期依赖关系,从而提出一个重新权衡的远程(RLR)分支。在提出的MR和RLR分支的基础上,作者构建了一个能有效捕获短期、中期和长期依赖的全范围依赖网络(ornet)。作者的ORDNet能够提取更全面的上下文信息,并能很好地适应场景图像中复杂的空间方差。大量的实验表明,作者所提出的ORDNet在三个场景分析基准测试(包括PASCAL Context、COCO St
ORDNet是一种新型的全范围依赖网络,旨在填补场景解析任务中长期依赖与短期依赖之间的空白。通过中程分支捕获中程依赖,重新权衡的远程分支捕获更准确的长期依赖,ORDNet能更好地适应复杂自然场景图像中的空间变化。在PASCAL Context、COCO Stuff和ADE20K等场景解析基准上,ORDNet超越了现有最先进的方法,证明了其在深度模型中捕获全方位依赖的优势。
最低0.47元/天 解锁文章
1729

被折叠的 条评论
为什么被折叠?



