题目:Towards Inductive and Efficient Explanations for Graph Neural Networks
向图神经网络的归纳和高效解释迈进
作者:Dongsheng Luo; Tianxiang Zhao; Wei Cheng; Dongkuan Xu; Feng Han; Wenchao Yu; Xiao Liu; Haifeng Chen; Xiang Zhang
摘要
尽管图神经网络(GNNs)近年来取得了进展,解释GNNs的预测仍然是一个具有挑战性且新兴的问题。主要的方法主要考虑局部解释,即重要的子图结构和节点特征,以解释为什么GNN模型会对单个实例(例如节点或图)做出预测。因此,生成的解释在实例级别上是精心定制的。独特的解释独立解释每个实例不足以提供对已学习GNN模型的全局理解,导致缺乏泛化能力,阻碍其在归纳设置中的使用。此外,为每个实例训练解释模型对于大规模现实世界数据集来说是耗时的。在本研究中,我们针对这些关键挑战提出了PGExplainer,这是一种参数化的GNN解释器。PGExplainer采用深度神经网络参数化解释生成过程,这使得PGEx