TPAMI 2024 | 向图神经网络的归纳和高效解释迈进

293 篇文章 21 订阅 ¥49.90 ¥99.00

题目:Towards Inductive and Efficient Explanations for Graph Neural Networks

向图神经网络的归纳和高效解释迈进

作者:Dongsheng Luo; Tianxiang Zhao; Wei Cheng; Dongkuan Xu; Feng Han; Wenchao Yu; Xiao Liu; Haifeng Chen; Xiang Zhang


摘要

尽管图神经网络(GNNs)近年来取得了进展,解释GNNs的预测仍然是一个具有挑战性且新兴的问题。主要的方法主要考虑局部解释,即重要的子图结构和节点特征,以解释为什么GNN模型会对单个实例(例如节点或图)做出预测。因此,生成的解释在实例级别上是精心定制的。独特的解释独立解释每个实例不足以提供对已学习GNN模型的全局理解,导致缺乏泛化能力,阻碍其在归纳设置中的使用。此外,为每个实例训练解释模型对于大规模现实世界数据集来说是耗时的。在本研究中,我们针对这些关键挑战提出了PGExplainer,这是一种参数化的GNN解释器。PGExplainer采用深度神经网络参数化解释生成过程,这使得PGEx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值